IDEAS home Printed from https://ideas.repec.org/p/hal/psewpa/halshs-01592863.html
   My bibliography  Save this paper

On the consistency of the two-step estimates of the MS-DFM: a Monte Carlo study

Author

Listed:
  • Catherine Doz

    (PJSE - Paris Jourdan Sciences Economiques - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Anna Petronevich

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CREST - Centre de Recherche en Economie et Statistique [Bruz] - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz])

Abstract

The Markov-Switching Dynamic Factor Model (MS-DFM) has been used in different applications, notably in the business cycle analysis. When the cross-sectional dimension of data is high, the Maximum Likelihood estimation becomes unfeasible due to the excessive number of parameters. In this case, the MS-DFM can be estimated in two steps, which means that in the first step the common factor is extracted from a database of indicators, and in the second step the Markov-Switching autoregressive model is fit to this extracted factor. The validity of the two-step method is conventionally accepted, although the asymptotic properties of the two-step estimates have not been studied yet. In this paper we examine their consistency as well as the small-sample behavior with the help of Monte Carlo simulations. Our results indicate that the two-step estimates are consistent when the number of cross-section series and time observations is large, however, as expected, the estimates and their standard errors tend to be biased in small samples.

Suggested Citation

  • Catherine Doz & Anna Petronevich, 2017. "On the consistency of the two-step estimates of the MS-DFM: a Monte Carlo study," PSE Working Papers halshs-01592863, HAL.
  • Handle: RePEc:hal:psewpa:halshs-01592863
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-01592863
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-01592863/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Paap, Richard & Segers, Rene & van Dijk, Dick, 2009. "Do Leading Indicators Lead Peaks More Than Troughs?," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 528-543.
    2. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    3. Scott Brave & R. Andrew Butters, 2010. "Gathering insights on the forest from the trees: a new metric for financial conditions," Working Paper Series WP-2010-07, Federal Reserve Bank of Chicago.
    4. Marcelle Chauvet & Zeynep Senyuz, 2012. "A Dynamic Factor Model of the Yield Curve as a Predictor of the Economy," Finance and Economics Discussion Series 2012-32, Board of Governors of the Federal Reserve System (U.S.).
    5. Marcelle Chauvet & Chengxuan Yu, 2006. "International business cycles: G7 and OECD countries," Economic Review, Federal Reserve Bank of Atlanta, vol. 91(Q 1), pages 43-54.
    6. Marie Bessec & Othman Bouabdallah, 2015. "Forecasting GDP over the Business Cycle in a Multi-Frequency and Data-Rich Environment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(3), pages 360-384, June.
    7. Michael Dolega, 2007. "Tracking Canadian Trend Productivity: A Dynamic Factor Model with Markov Switching," Discussion Papers 07-12, Bank of Canada.
    8. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    2. Maximo Camacho & Gabriel Perez‐Quiros & Pilar Poncela, 2015. "Extracting Nonlinear Signals from Several Economic Indicators," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1073-1089, November.
    3. Catherine Doz & Anna Petronevich, 2016. "Dating Business Cycle Turning Points for the French Economy: An MS-DFM approach," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 481-538, Emerald Group Publishing Limited.
    4. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    5. Dagum, Estela Bee, 2010. "Business Cycles and Current Economic Analysis/Los ciclos económicos y el análisis económico actual," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 577-594, Diciembre.
    6. Olivier Darné & Laurent Ferrara, 2011. "Identification of Slowdowns and Accelerations for the Euro Area Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(3), pages 335-364, June.
    7. Fabio Canova & Matteo Ciccarelli, 2009. "Estimating Multicountry Var Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 929-959, August.
    8. Scott Brave & Hesna Genay, 2011. "Federal Reserve policies and financial market conditions during the crisis," Working Paper Series WP-2011-04, Federal Reserve Bank of Chicago.
    9. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    10. Yasutomo Murasawa & Roberto S. Mariano, 2004. "Constructing a Coincident Index of Business Cycles Without Assuming a One-Factor Model," Econometric Society 2004 Far Eastern Meetings 710, Econometric Society.
    11. Luke Hartigan & Michelle Wright, 2021. "Financial Conditions and Downside Risk to Economic Activity in Australia," RBA Research Discussion Papers rdp2021-03, Reserve Bank of Australia.
    12. Urga, Giovanni & Wang, Fa, 2022. "Estimation and inference for high dimensional factor model with regime switching," MPRA Paper 113172, University Library of Munich, Germany.
    13. Shintani, Mototsugu, 2008. "A dynamic factor approach to nonlinear stability analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2788-2808, September.
    14. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    15. Drew Creal & Siem Jan Koopman & Eric Zivot, 2010. "Extracting a robust US business cycle using a time-varying multivariate model-based bandpass filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 695-719.
    16. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    17. Monica Billio & Anna Petronevich, 2017. "Dynamical Interaction between Financial and Business Cycles," Post-Print hal-01692239, HAL.
    18. Golinelli, Roberto & Parigi, Giuseppe, 2014. "Tracking world trade and GDP in real time," International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
    19. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    20. Sonia de Lucas Santos & M. Jesús Delgado Rodríguez & Inmaculada Álvarez Ayuso & José Luis Cendejas Bueno, 2011. "Los ciclos económicos internacionales: antecedentes y revisión de la literatura," Cuadernos de Economía - Spanish Journal of Economics and Finance, Asociación Cuadernos de Economía, vol. 34(95), pages 73-84, Agosto.

    More about this item

    Keywords

    Markov-switching; Dynamic Factor models; two-step estimation; small-sample performance; consistency; Monte Carlo simulations;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:psewpa:halshs-01592863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.