IDEAS home Printed from https://ideas.repec.org/p/hal/journl/lirmm-04179722.html
   My bibliography  Save this paper

Adapting a participatory modelling method to forecast food system scenarios: a case study on the pork value-chain

Author

Listed:
  • Romy Lynn Chaib

    (UMR ITAP - Technologies et Méthodes pour les Agricultures de demain - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - Institut Agro Montpellier - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement)

  • Catherine Macombe

    (UMR ITAP - Technologies et Méthodes pour les Agricultures de demain - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - Institut Agro Montpellier - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement)

  • Rallou Thomopoulos

    (UMR IATE - Ingénierie des Agro-polymères et Technologies Émergentes - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - Institut Agro Montpellier - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement - UM - Université de Montpellier)

Abstract

For a value-chain to be sustainable, the main challenge is sometimes its durability. When stakeholders are lost in the shifting maze of economic, social and environmental issues, participatory foresight methods help them consider the options and choose a strategy to follow. The aim is to create several scenarios of evolution of the value-chain and select desirable scenarios. Because of the global context in 2020 and 2021, implementing methodological and organizational adaptations in the classic "scenario method" from Michel Godet was necessary. These adaptations are exemplified by the case study of the prospective for the French pork value-chain in the next 5 years. Indeed, this value-chain touches particularly on certain contemporary concerns, with much discussion about its environmental footprint, its human resource challenge and its social acceptability, as is the case for most food value-chains in developed countries.

Suggested Citation

  • Romy Lynn Chaib & Catherine Macombe & Rallou Thomopoulos, 2022. "Adapting a participatory modelling method to forecast food system scenarios: a case study on the pork value-chain," Post-Print lirmm-04179722, HAL.
  • Handle: RePEc:hal:journl:lirmm-04179722
    DOI: 10.3280/ecag2022oa14488
    Note: View the original document on HAL open archive server: https://hal-lirmm.ccsd.cnrs.fr/lirmm-04179722v1
    as

    Download full text from publisher

    File URL: https://hal-lirmm.ccsd.cnrs.fr/lirmm-04179722v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.3280/ecag2022oa14488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Krystyna Stave & Birgit Kopainsky, 2015. "A system dynamics approach for examining mechanisms and pathways of food supply vulnerability," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(3), pages 321-336, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Busch, Gesa & Bayer, Elisa & Gunarathne, Anoma & Hölker, Sarah & Iweala, Sarah & Jürkenbeck, Kristin & Lemken, Dominic & Mehlhose, Clara & Ohlau, Marlene & Risius, Antje & Rubach, Constanze & Schütz, , 2020. "Einkaufs- und Ernährungsverhalten sowie Resilienz des Ernährungssystems aus Sicht der Bevölkerung: Ergebnisse einer Studie während der Corona-Pandemie im April 2020," DARE Discussion Papers 2003, Georg-August University of Göttingen, Department of Agricultural Economics and Rural Development (DARE).
    2. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    3. Olafsdottir, Anna Hulda & Gudbrandsdottir, Ingunn & Sverdrup, Harald U. & Bogason, Sigurdur G. & Olafsdottir, Gudrun & Stefansson, Gunnar, 2018. "System Dynamics Modelling and System Analysis Applied in Complex Research Projects - the Case of VALUMICS," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 9(5), December.
    4. Cooper, Gregory S. & Rich, Karl M. & Shankar, Bhavani & Rana, Vinay & Ratna, Nazmun N. & Kadiyala, Suneetha & Alam, Mohammad J. & Nadagouda, Sharan B., 2021. "Identifying ‘win-win-win’ futures from inequitable value chain trade-offs: A system dynamics approach," Agricultural Systems, Elsevier, vol. 190(C).
    5. Benabderrazik, K. & Kopainsky, B. & Tazi, L. & Joerin, J. & Six, J., 2021. "Agricultural intensification can no longer ignore water conservation – A systemic modelling approach to the case of tomato producers in Morocco," Agricultural Water Management, Elsevier, vol. 256(C).
    6. Benjamin L. Turner & Hector M. Menendez & Roger Gates & Luis O. Tedeschi & Alberto S. Atzori, 2016. "System Dynamics Modeling for Agricultural and Natural Resource Management Issues: Review of Some Past Cases and Forecasting Future Roles," Resources, MDPI, vol. 5(4), pages 1-24, November.
    7. Gerald Marten & Nurcan Atalan-Helicke, 2015. "Introduction to the Symposium on American Food Resilience (Part 2)," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 537-542, December.
    8. Francesca Galli & Alessio Cavicchi & Gianluca Brunori, 2019. "Food waste reduction and food poverty alleviation: a system dynamics conceptual model," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 36(2), pages 289-300, June.
    9. McGarraghy, Seán & Olafsdottir, Gudrun & Kazakov, Rossen & Huber, Élise & Loveluck, William & Gudbrandsdottir, Ingunn Y. & Čechura, Lukáš & Esposito, Gianandrea & Samoggia, Antonella & Aubert, Pierre-, 2022. "Conceptual system dynamics and agent-based modelling simulation of interorganisational fairness in food value chains: Research agenda and case studies," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(2).
    10. Therese Bennich & Salim Belyazid & Birgit Kopainsky & Arnaud Diemer, 2018. "Understanding the Transition to a Bio-Based Economy: Exploring Dynamics Linked to the Agricultural Sector in Sweden," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    11. Ivano Bongiovanni & Cameron Newton, 2019. "Toward an Epidemiology of Safety and Security Risks: An Organizational Vulnerability Assessment in International Airports," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1281-1297, June.
    12. Muflikh, Yanti Nuraeni & Smith, Carl & Aziz, Ammar Abdul, 2021. "A systematic review of the contribution of system dynamics to value chain analysis in agricultural development," Agricultural Systems, Elsevier, vol. 189(C).
    13. Seán McGarraghy & Gudrun Olafsdottir & Rossen Kazakov & Élise Huber & William Loveluck & Ingunn Y. Gudbrandsdottir & Lukáš Čechura & Gianandrea Esposito & Antonella Samoggia & Pierre-Marie Aubert & Da, 2022. "Conceptual System Dynamics and Agent-Based Modelling Simulation of Interorganisational Fairness in Food Value Chains: Research Agenda and Case Studies," Agriculture, MDPI, vol. 12(2), pages 1-30, February.
    14. Lie, Helene & Rich, Karl M. & van der Hoek, Rein & Dizyee, Kanar, 2018. "An empirical evaluation of policy options for inclusive dairy value chain development in Nicaragua: A system dynamics approach," Agricultural Systems, Elsevier, vol. 164(C), pages 193-222.
    15. Natalia Brzezina & Katharina Biely & Ariella Helfgott & Birgit Kopainsky & Joost Vervoort & Erik Mathijs, 2017. "Development of Organic Farming in Europe at the Crossroads: Looking for the Way Forward through System Archetypes Lenses," Sustainability, MDPI, vol. 9(5), pages 1-23, May.
    16. Cooper, G.S. & Shankar, B. & Rich, K.M. & Ratna, N.N. & Alam, M.J. & Singh, N. & Kadiyala, S., 2021. "Can fruit and vegetable aggregation systems better balance improved producer livelihoods with more equitable distribution?," World Development, Elsevier, vol. 148(C).
    17. Taheri, Seyed Ghiasuddin & Navabakhsh, Mehrzad & Tohidi, Hamid & Mohammaditabar, Davood, 2024. "A system dynamics model for optimum time, profitability, and customer satisfaction in omni-channel retailing," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    18. Balkan, Büsra Atamer & Lindqvist, Andreas Nicolaidis & Odoemena, Kelechi & Lamb, Robert & Tiongco, Monique Ann & Gupta, Stueti & Peteru, Arpitha & Menendez III, Hector Manuel, 2021. "Understanding the Impact of COVID-19 on Agriculture and Food Supply Chains: System Dynamics Modeling for the Resilience of Smallholder Farmers," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 12(03), September.
    19. Iffat Abbas Abbasi & Hasbullah Ashari & Ahmad Shabudin Ariffin & Ijaz Yusuf, 2023. "Farm to Fork: Indigenous Chicken Value Chain Modelling Using System Dynamics Approach," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    20. Therese Bennich & Salim Belyazid & Birgit Kopainsky & Arnaud Diemer, 2018. "The Bio-Based Economy: Dynamics Governing Transition Pathways in the Swedish Forestry Sector," Sustainability, MDPI, vol. 10(4), pages 1-18, March.

    More about this item

    Keywords

    Agri-Food Chain; Prospective Analysis; Scenario Method; Collective Modelling; Adaptation to Pandemic;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:lirmm-04179722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.