Development of a Common Framework for Analysing Public Transport Smart Card Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Gutiérrez, Aaron & Domènech, Antoni & Zaragozí, Benito & Miravet, Daniel, 2020. "Profiling tourists' use of public transport through smart travel card data," Journal of Transport Geography, Elsevier, vol. 88(C).
- Antoni Domènech & Daniel Miravet & Aaron Gutiérrez, 2020. "Mining bus travel card data for analysing mobilities in tourist regions," Journal of Maps, Taylor & Francis Journals, vol. 16(1), pages 40-49, January.
- Cuauhtemoc Anda & Alexander Erath & Pieter Jacobus Fourie, 2017. "Transport modelling in the age of big data," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 19-42, August.
- Bagchi, M. & White, P.R., 2005. "The potential of public transport smart card data," Transport Policy, Elsevier, vol. 12(5), pages 464-474, September.
- Aaron Gutiérrez & Daniel Miravet, 2016. "The Determinants of Tourist Use of Public Transport at the Destination," Sustainability, MDPI, vol. 8(9), pages 1-16, September.
- Morency, Catherine & Trépanier, Martin & Agard, Bruno, 2007. "Measuring transit use variability with smart-card data," Transport Policy, Elsevier, vol. 14(3), pages 193-203, May.
- Lovelace, Robin & Parkin, John & Cohen, Tom, 2020. "Open access transport models: A leverage point in sustainable transport planning," Transport Policy, Elsevier, vol. 97(C), pages 47-54.
- Ed Manley & Chen Zhong & Michael Batty, 2018. "Spatiotemporal variation in travel regularity through transit user profiling," Transportation, Springer, vol. 45(3), pages 703-732, May.
- Renee Zahnow & Jonathan Corcoran, 2021. "Crime and bus stops: An examination using transit smart card and crime data," Environment and Planning B, , vol. 48(4), pages 706-723, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gutiérrez, Aaron & Domènech, Antoni & Zaragozí, Benito & Miravet, Daniel, 2020. "Profiling tourists' use of public transport through smart travel card data," Journal of Transport Geography, Elsevier, vol. 88(C).
- Kevin Credit & Zander Arnao, 2023. "A method to derive small area estimates of linked commuting trips by mode from open source LODES and ACS data," Environment and Planning B, , vol. 50(3), pages 709-722, March.
- Pieroni, Caio & Giannotti, Mariana & Alves, Bianca B. & Arbex, Renato, 2021. "Big data for big issues: Revealing travel patterns of low-income population based on smart card data mining in a global south unequal city," Journal of Transport Geography, Elsevier, vol. 96(C).
- Wang, Yihong & Correia, Gonçalo Homem de Almeida & de Romph, Erik & Timmermans, H.J.P., 2017. "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, Elsevier, vol. 63(C), pages 40-47.
- Tao, Sui & Rohde, David & Corcoran, Jonathan, 2014. "Examining the spatial–temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap," Journal of Transport Geography, Elsevier, vol. 41(C), pages 21-36.
- Bantis, Thanos & Haworth, James, 2020. "Assessing transport related social exclusion using a capabilities approach to accessibility framework: A dynamic Bayesian network approach," Journal of Transport Geography, Elsevier, vol. 84(C).
- Qingru Zou & Xiangming Yao & Peng Zhao & Heng Wei & Hui Ren, 2018. "Detecting home location and trip purposes for cardholders by mining smart card transaction data in Beijing subway," Transportation, Springer, vol. 45(3), pages 919-944, May.
- De Zhao & Wei Wang & Amber Woodburn & Megan S. Ryerson, 2017. "Isolating high-priority metro and feeder bus transfers using smart card data," Transportation, Springer, vol. 44(6), pages 1535-1554, November.
- Amarin Siripanich & Taha Hossein Rashidi & Emily Moylan, 2019. "Interaction of Public Transport Accessibility and Residential Property Values Using Smart Card Data," Sustainability, MDPI, vol. 11(9), pages 1-24, May.
- Bernal, Margarita & Welch, Eric W. & Sriraj, P.S., 2016. "The effect of slow zones on ridership: An analysis of the Chicago Transit Authority “El” Blue Line," Transportation Research Part A: Policy and Practice, Elsevier, vol. 87(C), pages 11-21.
- Sung-Pil Hong & Yun-Hong Min & Myoung-Ju Park & Kyung Min Kim & Suk Mun Oh, 2016. "Precise estimation of connections of metro passengers from Smart Card data," Transportation, Springer, vol. 43(5), pages 749-769, September.
- Amaya, Margarita & Cruzat, Ramón & Munizaga, Marcela A., 2018. "Estimating the residence zone of frequent public transport users to make travel pattern and time use analysis," Journal of Transport Geography, Elsevier, vol. 66(C), pages 330-339.
- Zijia Wang & Hao Tang & Wenjuan Wang & Yang Xi, 2020. "The Pattern of Non-Roundtrip Travel on Urban Rail and Its Application in Transit Improvement," Sustainability, MDPI, vol. 12(9), pages 1-16, April.
- Jiao, Hongzan & Huang, Shibiao & Zhou, Yu, 2023. "Understanding the land use function of station areas based on spatiotemporal similarity in rail transit ridership: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 109(C).
- Fulman, Nir & Marinov, Maria & Benenson, Itzhak, 2023. "Investigating occasional travel patterns based on smartcard transactions," Transport Policy, Elsevier, vol. 141(C), pages 152-166.
- Nadav Shalit & Michael Fire & Eran Ben-Elia, 2023. "A supervised machine learning model for imputing missing boarding stops in smart card data," Public Transport, Springer, vol. 15(2), pages 287-319, June.
- Ying Song & Yingling Fan & Xin Li & Yanjie Ji, 2018. "Multidimensional visualization of transit smartcard data using space–time plots and data cubes," Transportation, Springer, vol. 45(2), pages 311-333, March.
- Oscar Egu & Patrick Bonnel, 2020. "Investigating day-to-day variability of transit usage on a multimonth scale with smart card data. A case study in Lyon," Post-Print halshs-03148937, HAL.
- Páez, Antonio & Trépanier, Martin & Morency, Catherine, 2011. "Geodemographic analysis and the identification of potential business partnerships enabled by transit smart cards," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 640-652, August.
- Sun, Li & Zhao, Juanjuan & Zhang, Jun & Zhang, Fan & Ye, Kejiang & Xu, Chengzhong, 2024. "Activity-based individual travel regularity exploring with entropy-space K-means clustering using smart card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
More about this item
Keywords
public transport; smart card data; geodatabase; open science;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6083-:d:642053. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.