IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00607954.html
   My bibliography  Save this paper

La gestion du risque crédit par la méthode du scoring: cas de la Banque Populaire de Rabat-Kénitra

Author

Listed:
  • Azzouz Elhamma

    (EDG - EDG rabat - faculté de rabat agdal)

Abstract

La crise financière qui secoue le monde actuellement, notamment les défaillances successives des grandes banques internationales (Lehman Brothers aux Etats-Unis par exemple) ont remis sur le devant de la scène la problématique des risques bancaires dont le risque crédit. Ce risque doit être géré actuellement par des méthodes plus sophistiquées. Parmi ces méthodes, nous citons la méthode du scoring qui reste malheureusement inconnue dans notre pays. Cet article met évidence, d'après une étude empirique portant sur 46 entreprises clientes de la Banque Populaire de Rabat-Kénitra, les étapes pratiques qu'il faut respecter pour concevoir une méthode de scoring. La fonction score extraite semble être robuste en matière de gestion du risque crédit.

Suggested Citation

  • Azzouz Elhamma, 2009. "La gestion du risque crédit par la méthode du scoring: cas de la Banque Populaire de Rabat-Kénitra," Post-Print halshs-00607954, HAL.
  • Handle: RePEc:hal:journl:halshs-00607954
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00607954
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00607954/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michel Dietsch & Joël Petey, 2003. "Mesure et gestion du risque de crédit dans les institutions financières," ULB Institutional Repository 2013/14375, ULB -- Universite Libre de Bruxelles.
    2. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guy Kpakpo & Elizaveta Ruzina, 2023. "Analysis of the Effectiveness of Budget Deficit Financing Methods in Cote D'ivoire Using a Credit Scoring Model," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 51-74.
    2. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    3. Suzan Hol, 2006. "The influence of the business cycle on bankruptcy probability," Discussion Papers 466, Statistics Norway, Research Department.
    4. Lin, Hsiou-Wei William & Lo, Huai-Chun & Wu, Ruei-Shian, 2016. "Modeling default prediction with earnings management," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 306-322.
    5. Christophe Godlewski, 2004. "Modélisation de la Prévision de Défaillance Bancaire Une Application aux Banques des Pays Emergents," Finance 0409026, University Library of Munich, Germany.
    6. Maurice Peat, 2007. "Factors Affecting the Probability of Bankruptcy: A Managerial Decision Based Approach," Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 303-324, September.
    7. Shekar Shetty & Mohamed Musa & Xavier Brédart, 2022. "Bankruptcy Prediction Using Machine Learning Techniques," JRFM, MDPI, vol. 15(1), pages 1-10, January.
    8. Silvia Mariela Méndez-Prado & Ariel Flores Ulloa, 2022. "The Impact Analysis of Psychological Issues and Pandemic-Related Variables on Ecuadorian University Students during COVID-19," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    9. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    10. Quader, Syed Manzur, 2017. "Differential effect of liquidity constraints on firm growth," Review of Financial Economics, Elsevier, vol. 32(C), pages 20-29.
    11. Mitroussi, K. & Abouarghoub, W. & Haider, J.J. & Pettit, S.J. & Tigka, N., 2016. "Performance drivers of shipping loans: An empirical investigation," International Journal of Production Economics, Elsevier, vol. 171(P3), pages 438-452.
    12. M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 83-102, June.
    13. Catherine Refait, 2004. "La prévision de la faillite fondée sur l’analyse financière de l’entreprise : un état des lieux," Économie et Prévision, Programme National Persée, vol. 162(1), pages 129-147.
    14. Jeyhun A. Abbasov, 2017. "Financial ratios and the prediction of bankruptcy," Working Papers 1705, Central Bank of Azerbaijan Republic.
    15. Dina Ait Lahcen, 2023. "Synthetic Reading Of The Different Approaches And Models For Assessing The Risk Of Business Failure [Lecture Synthétique Des Diverses Approches Et Modèles D'Évaluation Du Risque De La Défaillance D," Post-Print hal-04009420, HAL.
    16. Golaszewski, Richard & Sanders, Matthew, 1991. "Financial Stress in the U.S. Airline Industry," Transportation Research Forum Proceedings 1990s 319097, Transportation Research Forum.
    17. Malcolm Smith & Yun Ren & Yinan Dong, 2011. "The predictive ability of “conservatism” and “governance” variables in corporate financial disclosures," Asian Review of Accounting, Emerald Group Publishing Limited, vol. 19(2), pages 171-185, July.
    18. Roman Vavrek & Ivana Kravčáková Vozárová & Rastislav Kotulič, 2021. "Evaluating the Financial Health of Agricultural Enterprises in the Conditions of the Slovak Republic Using Bankruptcy Models," Agriculture, MDPI, vol. 11(3), pages 1-19, March.
    19. Chiuling Lu & Ann Yang & Jui-Feng Huang, 2015. "Bankruptcy predictions for U.S. air carrier operations: a study of financial data," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(3), pages 574-589, July.
    20. Jones, Stewart & Johnstone, David & Wilson, Roy, 2015. "An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 72-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00607954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.