IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00259238.html
   My bibliography  Save this paper

Forecasting chaotic systems : the role of local Lyapunov exponents

Author

Listed:
  • Dominique Guegan

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Justin Leroux

    (HEC Montréal - HEC Montréal, CIRPEE - Centre interuniversitaire sur le risque, les politiques économiques et l'emploi [Montréal] - UQAM - Université du Québec à Montréal = University of Québec in Montréal)

Abstract

We propose a novel methodology for forecasting chaotic systems which is based on the nearest-neighbor predictor and improves upon it by incorporating local Lyapunov exponents to correct for its inevitable bias. Using simulated data, we show that gains in prediction accuracy can be substantial. The general intuition behind the proposed method can readily be applied to other non-parametric predictors.

Suggested Citation

  • Dominique Guegan & Justin Leroux, 2008. "Forecasting chaotic systems : the role of local Lyapunov exponents," Post-Print halshs-00259238, HAL.
  • Handle: RePEc:hal:journl:halshs-00259238
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00259238v2
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00259238v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shintani, Mototsugu & Linton, Oliver, 2004. "Nonparametric neural network estimation of Lyapunov exponents and a direct test for chaos," Journal of Econometrics, Elsevier, vol. 120(1), pages 1-33, May.
    2. Barnett,William A. & Kirman,Alan P. & Salmon,Mark, 1997. "Nonlinear Dynamics and Economics," Cambridge Books, Cambridge University Press, number 9780521471411, October.
    3. Yousefi, Shahriar & Weinreich, Ilona & Reinarz, Dominik, 2005. "Wavelet-based prediction of oil prices," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 265-275.
    4. Chian, Abraham C.-L. & Rempel, Erico L. & Rogers, Colin, 2006. "Complex economic dynamics: Chaotic saddle, crisis and intermittency," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1194-1218.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guégan & Justin Leroux, 2008. "Local Lyapunov exponents: Zero plays no role in Forecasting chaotic systems," Cahiers de recherche 08-10, HEC Montréal, Institut d'économie appliquée.
    2. Dominique Guegan & Justin Leroux, 2009. "Forecasting chaotic systems: The role of local Lyapunov exponents," PSE-Ecole d'économie de Paris (Postprint) halshs-00431726, HAL.
    3. Dominique Guegan & Justin Leroux, 2009. "Forecasting chaotic systems: The role of local Lyapunov exponents," Post-Print halshs-00431726, HAL.
    4. Guégan, Dominique & Leroux, Justin, 2009. "Forecasting chaotic systems: The role of local Lyapunov exponents," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2401-2404.
    5. Dominique Guégan & Justin Leroux, 2007. "Forecasting chaotic systems: The role of local Lyapunov exponents," Cahiers de recherche 07-12, HEC Montréal, Institut d'économie appliquée.
    6. Dominique Guegan & Justin Leroux, 2009. "Local Lyapunov Exponents: A new way to predict chaotic systems," Post-Print halshs-00511996, HAL.
    7. Dominique Guegan, 2007. "Chaos in economics and finance," Documents de travail du Centre d'Economie de la Sorbonne b07054, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jan 2009.
    8. Dominique Guegan & Justin Leroux, 2009. "Local Lyapunov Exponents: A new way to predict chaotic systems," PSE-Ecole d'économie de Paris (Postprint) halshs-00511996, HAL.
    9. Dominique Guegan & Justin Leroux, 2010. "Predicting chaos with Lyapunov exponents: Zero plays no role in forecasting chaotic systems," Post-Print halshs-00462454, HAL.
    10. Marcos Álvarez-Díaz & Alberto Álvarez, 2002. "Predicción No-Lineal De Tipos De Cambio: Algoritmos Genéticos, Redes Neuronales Y Fusión De Datos," Working Papers 0205, Universidade de Vigo, Departamento de Economía Aplicada.
    11. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    12. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    13. Singh, Sarbjit & Parmar, Kulwinder Singh & Kumar, Jatinder & Makkhan, Sidhu Jitendra Singh, 2020. "Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    14. Vitaliy Vandrovych, 2005. "Study of Nonlinearities in the Dynamics of Exchange Rates: Is There Any Evidence of Chaos?," Computing in Economics and Finance 2005 234, Society for Computational Economics.
    15. Shalini, Velappan & Prasanna, Krishna, 2016. "Impact of the financial crisis on Indian commodity markets: Structural breaks and volatility dynamics," Energy Economics, Elsevier, vol. 53(C), pages 40-57.
    16. Serletis, Apostolos & Uritskaya, Olga Y., 2007. "Detecting signatures of stochastic self-organization in US money and velocity measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 281-291.
    17. Joanna Janczura & Rafał Weron, 2012. "Efficient estimation of Markov regime-switching models: An application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 385-407, July.
    18. Lucía Inglada-Pérez & Sandra González y Gil, 2024. "A Study on the Nature of Complexity in the Spanish Electricity Market Using a Comprehensive Methodological Framework," Mathematics, MDPI, vol. 12(6), pages 1-21, March.
    19. Liu, Guojun & Feng, Xiangchu & Li, Min, 2009. "Relationship of d-dimensional continuous multi-scale wavelet shrinkage with integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1118-1126.
    20. Ding, Yuting & Jiang, Weihua & Wang, Hongbin, 2012. "Hopf-pitchfork bifurcation and periodic phenomena in nonlinear financial system with delay," Chaos, Solitons & Fractals, Elsevier, vol. 45(8), pages 1048-1057.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00259238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.