IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04595355.html
   My bibliography  Save this paper

Unexpected opportunities in misspecified predictive regressions

Author

Listed:
  • Guillaume Coqueret

    (EM - EMLyon Business School)

  • Romain Deguest

    (World Bank Group)

Abstract

This article documents surprising learning patterns that can occur under model misspecification. An agent resorts to predictive regressions and fails to take into account autocorrelation in the dependent variable. Remarkably, when the dependent and independent variables are uncorrelated, we find cases for which the resulting out-of-sample is well above zero, which benefits the agent, in spite of the erroneous model. We refer to them as instances of unexpected opportunity. When both variables exhibit high levels of persistence, we reveal the existence of counter-intuitive configurations for which the increases when the absolute correlation between the series decreases. Our theoretical results are confirmed by extensive simulations and complemented by an empirical exercise of equity premium prediction for which we use 15 predictors commonly referenced in the economic literature.

Suggested Citation

  • Guillaume Coqueret & Romain Deguest, 2024. "Unexpected opportunities in misspecified predictive regressions," Post-Print hal-04595355, HAL.
  • Handle: RePEc:hal:journl:hal-04595355
    DOI: 10.1016/j.ejor.2024.05.044
    Note: View the original document on HAL open archive server: https://hal.science/hal-04595355v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04595355v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.ejor.2024.05.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    3. Lazar, Emese & Qi, Shuyuan, 2022. "Model risk in the over-the-counter market," European Journal of Operational Research, Elsevier, vol. 298(2), pages 769-784.
    4. Campbell, John Y., 2001. "Why long horizons? A study of power against persistent alternatives," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 459-491, December.
    5. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    6. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2014. "Forecasting stock returns under economic constraints," Journal of Financial Economics, Elsevier, vol. 114(3), pages 517-553.
    7. Markku Lanne, 2002. "Testing The Predictability Of Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 407-415, August.
    8. Ke-Li Xu & Lauren Cohen, 2020. "Testing for Multiple-Horizon Predictability: Direct Regression Based versus Implication Based," The Review of Financial Studies, Society for Financial Studies, vol. 33(9), pages 4403-4443.
    9. Ai Deng, 2014. "Understanding Spurious Regression in Financial Economics," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 122-150.
    10. Walter Torous & Rossen Valkanov & Shu Yan, 2004. "On Predicting Stock Returns with Nearly Integrated Explanatory Variables," The Journal of Business, University of Chicago Press, vol. 77(4), pages 937-966, October.
    11. Mitchell, P. L., 1997. "Misuse of regression for empirical validation of models," Agricultural Systems, Elsevier, vol. 54(3), pages 313-326, July.
    12. Nelson, Daniel B. & Foster, Dean P., 1995. "Filtering and forecasting with misspecified ARCH models II : Making the right forecast with the wrong model," Journal of Econometrics, Elsevier, vol. 67(2), pages 303-335, June.
    13. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    14. Wayne E. Ferson & Sergei Sarkissian & Timothy T. Simin, 2003. "Spurious Regressions in Financial Economics?," Journal of Finance, American Finance Association, vol. 58(4), pages 1393-1413, August.
    15. Guillaume Coqueret & Bertrand Tavin, 2016. "An investigation of model risk in a market with jumps and stochastic volatility," Post-Print hal-02010659, HAL.
    16. Natalia Sizova, 2013. "Long-Horizon Return Regressions With Historical Volatility and Other Long-Memory Variables," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 546-559, October.
    17. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    18. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    19. Xiaoneng Zhu, 2015. "Tug-of-War: Time-Varying Predictability of Stock Returns and Dividend Growth," Review of Finance, European Finance Association, vol. 19(6), pages 2317-2358.
    20. JULES H. Van BINSBERGEN & RALPH S. J. KOIJEN, 2010. "Predictive Regressions: A Present‐Value Approach," Journal of Finance, American Finance Association, vol. 65(4), pages 1439-1471, August.
    21. Bossaerts, Peter & Hillion, Pierre, 1999. "Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn?," The Review of Financial Studies, Society for Financial Studies, vol. 12(2), pages 405-428.
    22. repec:adr:anecst:y:1986:i:4:p:05 is not listed on IDEAS
    23. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    24. repec:bla:jfinan:v:58:y:2003:i:4:p:1393-1414 is not listed on IDEAS
    25. D Wu & D L Olson, 2010. "Enterprise risk management: coping with model risk in a large bank," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(2), pages 179-190, February.
    26. Simone Cerreia†Vioglio & Lars Peter Hansen & Fabio Maccheroni & Massimo Marinacci, 2020. "Making Decisions under Model Misspecification," Working Papers 2020-103, Becker Friedman Institute for Research In Economics.
    27. Sawa, Takamitsu, 1972. "Finite-Sample Properties of the k-Class Estimators," Econometrica, Econometric Society, vol. 40(4), pages 653-680, July.
    28. Retsef Levi & Ganesh Janakiraman & Mahesh Nagarajan, 2008. "A 2-Approximation Algorithm for Stochastic Inventory Control Models with Lost Sales," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 351-374, May.
    29. Mila Nambiar & David Simchi-Levi & He Wang, 2019. "Dynamic Learning and Pricing with Model Misspecification," Management Science, INFORMS, vol. 65(11), pages 4980-5000, November.
    30. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    31. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    32. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    33. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    34. Amit Goyal & Ivo Welch, 2003. "Predicting the Equity Premium with Dividend Ratios," Management Science, INFORMS, vol. 49(5), pages 639-654, May.
    35. Magnus, J.R., 1990. "On certain moments relating to ratios of quadratic forms in normal variables : Further results," Other publications TiSEM ee6e9beb-1fbb-4232-9571-6, Tilburg University, School of Economics and Management.
    36. Novy-Marx, Robert, 2014. "Predicting anomaly performance with politics, the weather, global warming, sunspots, and the stars," Journal of Financial Economics, Elsevier, vol. 112(2), pages 137-146.
    37. Bandi, Federico M. & Perron, Benoît, 2008. "Long-run risk-return trade-offs," Journal of Econometrics, Elsevier, vol. 143(2), pages 349-374, April.
    38. Coqueret, Guillaume & Tavin, Bertrand, 2016. "An investigation of model risk in a market with jumps and stochastic volatility," European Journal of Operational Research, Elsevier, vol. 253(3), pages 648-658.
    39. Luong, Huynh Trung, 2007. "Measure of bullwhip effect in supply chains with autoregressive demand process," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1086-1097, August.
    40. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    41. Hjalmarsson, Erik, 2011. "New Methods for Inference in Long-Horizon Regressions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 46(3), pages 815-839, June.
    42. Jan R. Magnus, 1986. "The Exact Moments of a Ratio of Quadratic Forms in Normal Variables," Annals of Economics and Statistics, GENES, issue 4, pages 95-109.
    43. Jacob Boudoukh & Matthew Richardson & Robert F. Whitelaw, 2008. "The Myth of Long-Horizon Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1577-1605, July.
    44. Peter C. B. Phillips, 2015. "Halbert White Jr. Memorial JFEC Lecture: Pitfalls and Possibilities in Predictive Regression†," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 521-555.
    45. Matthew J. Sobel & Volodymyr Babich, 2012. "Optimality of Myopic Policies for Dynamic Lot-Sizing Problems in Serial Production Lines with Random Yields and Autoregressive Demand," Operations Research, INFORMS, vol. 60(6), pages 1520-1536, December.
    46. Alwosheel, Ahmad & van Cranenburgh, Sander & Chorus, Caspar G., 2018. "Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis," Journal of choice modelling, Elsevier, vol. 28(C), pages 167-182.
    47. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    48. Bao, Yong & Kan, Raymond, 2013. "On the moments of ratios of quadratic forms in normal random variables," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 229-245.
    49. Guillaume Coqueret & Bertrand Tavin, 2016. "An investigation of model risk in a market with jumps and stochastic volatility," Post-Print hal-02313399, HAL.
    50. Kan, Raymond & Wang, Xiaolu, 2010. "On the distribution of the sample autocorrelation coefficients," Journal of Econometrics, Elsevier, vol. 154(2), pages 101-121, February.
    51. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2015. "Learning and Pricing with Models That Do Not Explicitly Incorporate Competition," Operations Research, INFORMS, vol. 63(1), pages 86-103, February.
    52. Valkanov, Rossen, 2003. "Long-horizon regressions: theoretical results and applications," Journal of Financial Economics, Elsevier, vol. 68(2), pages 201-232, May.
    53. Hsiao, Cheng, 1981. "Autoregressive modelling and money-income causality detection," Journal of Monetary Economics, Elsevier, vol. 7(1), pages 85-106.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coqueret, Guillaume & Deguest, Romain, 2024. "Unexpected opportunities in misspecified predictive regressions," European Journal of Operational Research, Elsevier, vol. 318(2), pages 686-700.
    2. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    3. Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).
    4. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    5. Ferreira, Miguel A. & Santa-Clara, Pedro, 2011. "Forecasting stock market returns: The sum of the parts is more than the whole," Journal of Financial Economics, Elsevier, vol. 100(3), pages 514-537, June.
    6. repec:grz:wpaper:2012-02 is not listed on IDEAS
    7. Chen, Long, 2009. "On the reversal of return and dividend growth predictability: A tale of two periods," Journal of Financial Economics, Elsevier, vol. 92(1), pages 128-151, April.
    8. Jank, Stephan, 2012. "Changes in the composition of publicly traded firms: Implications for the dividend-price ratio and return predictability," CFR Working Papers 12-08, University of Cologne, Centre for Financial Research (CFR).
    9. Hjalmarsson, Erik, 2005. "On the Predictability of Global Stock Returns," Working Papers in Economics 161, University of Gothenburg, Department of Economics.
    10. Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.
    11. Stephan Jank, 2015. "Changes in the Composition of Publicly Traded Firms: Implications for the Dividend-Price Ratio and Return Predictability," Management Science, INFORMS, vol. 61(6), pages 1362-1377, June.
    12. Chevillon, Guillaume, 2017. "Robustness of Multistep Forecasts and Predictive Regressions at Intermediate and Long Horizons," ESSEC Working Papers WP1710, ESSEC Research Center, ESSEC Business School.
    13. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
    14. Okou, Cédric & Jacquier, Éric, 2016. "Horizon effect in the term structure of long-run risk-return trade-offs," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 445-466.
    15. Bakshi, Gurdip & Panayotov, George & Skoulakis, Georgios, 2011. "Improving the predictability of real economic activity and asset returns with forward variances inferred from option portfolios," Journal of Financial Economics, Elsevier, vol. 100(3), pages 475-495, June.
    16. Kostakis, Alexandros & Magdalinos, Tassos & Stamatogiannis, Michalis P., 2023. "Taking stock of long-horizon predictability tests: Are factor returns predictable?," Journal of Econometrics, Elsevier, vol. 237(2).
    17. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    18. Qi Liu & Libin Tao & Weixing Wu & Jianfeng Yu, 2017. "Short- and Long-Run Business Conditions and Expected Returns," Management Science, INFORMS, vol. 63(12), pages 4137-4157, December.
    19. Cedric Okou & Eric Jacquier, 2014. "Horizon Effect in the Term Structure of Long-Run Risk-Return Trade-Offs," CIRANO Working Papers 2014s-36, CIRANO.
    20. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    21. Maio, Paulo & Xu, Danielle, 2020. "Cash-flow or return predictability at long horizons? The case of earnings yield," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 172-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04595355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.