IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04470367.html
   My bibliography  Save this paper

Early warning system for currency crises using long short‐term memory and gated recurrent unit neural networks

Author

Listed:
  • Sylvain Barthélémy
  • Virginie Gautier
  • Fabien Rondeau

    (CREM - Centre de recherche en économie et management - UNICAEN - Université de Caen Normandie - NU - Normandie Université - UR - Université de Rennes - CNRS - Centre National de la Recherche Scientifique)

Abstract

Currency crises, recurrent events in the economic history of developing, emerging, and developed countries, have disastrous economic consequences. This paper proposes an early warning system for currency crises using sophisticated recurrent neural networks, such as long short‐term memory (LSTM) and gated recurrent unit (GRU). These models were initially used in language processing, where they performed well. Such models are increasingly being used in forecasting financial asset prices, including exchange rates, but they have not yet been applied to the prediction of currency crises. As for all recurrent neural networks, they allow for taking into account nonlinear interactions between variables and the influence of past data in a dynamic form. For a set of 68 countries including developed, emerging, and developing economies over the period of 1995–2020, LSTM and GRU outperformed our benchmark models. LSTM and GRU correctly sent continuous signals within a 2‐year warning window to alert for 91% of the crises. For the LSTM, false signals represent only 14% of the emitted signals compared with 23% for logistic regression, making it an efficient early warning system for policymakers.

Suggested Citation

  • Sylvain Barthélémy & Virginie Gautier & Fabien Rondeau, 2024. "Early warning system for currency crises using long short‐term memory and gated recurrent unit neural networks," Post-Print hal-04470367, HAL.
  • Handle: RePEc:hal:journl:hal-04470367
    DOI: 10.1002/for.3069
    Note: View the original document on HAL open archive server: https://hal.science/hal-04470367
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04470367/document
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrew Berg & Eduardo Borensztein & Catherine Pattillo, 2005. "Assessing Early Warning Systems: How Have They Worked in Practice?," IMF Staff Papers, Palgrave Macmillan, vol. 52(3), pages 1-5.
    2. Swati R. Ghosh & Atish R. Ghosh, 2003. "Structural Vulnerabilities and Currency Crises," IMF Staff Papers, Palgrave Macmillan, vol. 50(3), pages 1-7.
    3. Jeffrey D. Sachs & Aaron Tornell & Andrés Velasco, 1996. "Financial Crises in Emerging Markets: The Lessons from 1995," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(1), pages 147-216.
    4. Oscar Claveria & Enric Monte & Petar Soric & Salvador Torra, 2022. ""An application of deep learning for exchange rate forecasting"," IREA Working Papers 202201, University of Barcelona, Research Institute of Applied Economics, revised Jan 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frankel, Jeffrey & Saravelos, George, 2012. "Can leading indicators assess country vulnerability? Evidence from the 2008–09 global financial crisis," Journal of International Economics, Elsevier, vol. 87(2), pages 216-231.
    2. Rakesh Padhan & K. P. Prabheesh, 2019. "Effectiveness Of Early Warning Models: A Critical Review And New Agenda For Future Direction," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 22(4), pages 457-484, December.
    3. Jeffrey A. Frankel & George Saravelos, 2010. "Are Leading Indicators of Financial Crises Useful for Assessing Country Vulnerability? Evidence from the 2008-09 Global Crisis," NBER Working Papers 16047, National Bureau of Economic Research, Inc.
    4. Christofides, Charis & Eicher, Theo S. & Papageorgiou, Chris, 2016. "Did established Early Warning Signals predict the 2008 crises?," European Economic Review, Elsevier, vol. 81(C), pages 103-114.
    5. Hyeongwoo Kim & Wen Shi & Hyun Hak Kim, 2020. "Forecasting financial stress indices in Korea: a factor model approach," Empirical Economics, Springer, vol. 59(6), pages 2859-2898, December.
    6. Martin Feldkircher & Thomas Gruber & Isabella Moder, 2014. "Using a Threshold Approach to Flag Vulnerabilities in CESEE Economies," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 3, pages 8-30.
    7. Shimpalee, Pattama L. & Breuer, Janice Boucher, 2006. "Currency crises and institutions," Journal of International Money and Finance, Elsevier, vol. 25(1), pages 125-145, February.
    8. Timothy Bianco & Dieter Gramlich & Mikhail V. Oet & Stephen J. Ong, 2012. "Financial stress index: a lens for supervising the financial system," Working Papers (Old Series) 12-37, Federal Reserve Bank of Cleveland.
    9. Lanbiao Liu & Chen Chen & Bo Wang, 2022. "Predicting financial crises with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 871-910, August.
    10. Casu, Barbara & Clare, Andrew & Saleh, Nashwa, 2011. "Towards a new model for early warning signals for systemic financial fragility and near crises: an application to OECD countries," MPRA Paper 37043, University Library of Munich, Germany.
    11. Pontines, Victor & Siregar, Reza, 2008. "Fundamental pitfalls of exchange market pressure-based approaches to identification of currency crises," International Review of Economics & Finance, Elsevier, vol. 17(3), pages 345-365.
    12. Ryota Nakatani, 2017. "The Effects of Productivity Shocks, Financial Shocks, and Monetary Policy on Exchange Rates: An Application of the Currency Crisis Model and Implications for Emerging Market Crises," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 53(11), pages 2545-2561, November.
    13. Bicaba, Zorobabel & Kapp, Daniel & Molteni, Francesco, 2014. "Stability periods between financial crises: The role of macroeconomic fundamentals and crises management policies," Economic Modelling, Elsevier, vol. 43(C), pages 346-360.
    14. Ari, Ali, 2008. "An Early Warning Signals Approach for Currency Crises: The Turkish Case," MPRA Paper 25858, University Library of Munich, Germany, revised 2009.
    15. Marcos Chamon & Atish Ghosh & Jun Il Kim, 2012. "Are All Emerging Market Crises Alike?," Chapters, in: Maurice Obstfeld & Dongchul Cho & Andrew Mason (ed.), Global Economic Crisis, chapter 10, Edward Elgar Publishing.
    16. Jianping Shi & Yu Gao, 2010. "A Study on KLR Financial Crisis Early-Warning Model," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 5(2), pages 254-275, June.
    17. Ivana Marjanoviæ & Milan Markoviæ, 2019. "Determinants of currency crises in the Republic of Serbia," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(1), pages 191-212.
    18. Markus Holopainen & Peter Sarlin, 2015. "Toward robust early-warning models: A horse race, ensembles and model uncertainty," Papers 1501.04682, arXiv.org, revised Apr 2016.
    19. Banaian King & Lo Ming Chien, 2006. "Indexing Speculative Pressure on an Exchange Rate Regime: A Case Study of Macedonia," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-21, March.
    20. Shimpalee, Pattama L. & Breuer, Janice Boucher, 2007. "An event study of institutions and currency crises," Review of Financial Economics, Elsevier, vol. 16(3), pages 274-290.

    More about this item

    Keywords

    currency crises; early warning system; gated recurrent unit; long short-term memory; neural network;
    All these keywords.

    JEL classification:

    • F14 - International Economics - - Trade - - - Empirical Studies of Trade
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04470367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.