IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04420223.html
   My bibliography  Save this paper

Organisation et monitoring des capacités hospitalières en période de crise

Author

Listed:
  • Thierry Garaix

    (CIS - MINES - Centre Ingénierie Santé, Saint-Étienne, LIMOS - Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes - ENSM ST-ETIENNE - Ecole Nationale Supérieure des Mines de St Etienne - CNRS - Centre National de la Recherche Scientifique - UCA - Université Clermont Auvergne - INP Clermont Auvergne - Institut national polytechnique Clermont Auvergne - UCA - Université Clermont Auvergne)

  • Camille Breen

    (CIS - MINES - Centre Ingénierie Santé, Saint-Étienne, LIMOS - Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes - ENSM ST-ETIENNE - Ecole Nationale Supérieure des Mines de St Etienne - CNRS - Centre National de la Recherche Scientifique - UCA - Université Clermont Auvergne - INP Clermont Auvergne - Institut national polytechnique Clermont Auvergne - UCA - Université Clermont Auvergne)

  • Mohamed El Habib Messabis

    (CIS - MINES - Centre Ingénierie Santé, Saint-Étienne, LIMOS - Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes - ENSM ST-ETIENNE - Ecole Nationale Supérieure des Mines de St Etienne - CNRS - Centre National de la Recherche Scientifique - UCA - Université Clermont Auvergne - INP Clermont Auvergne - Institut national polytechnique Clermont Auvergne - UCA - Université Clermont Auvergne)

  • Raksmey Phan

    (CIS - MINES - Centre Ingénierie Santé, Saint-Étienne, LIMOS - Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes - ENSM ST-ETIENNE - Ecole Nationale Supérieure des Mines de St Etienne - CNRS - Centre National de la Recherche Scientifique - UCA - Université Clermont Auvergne - INP Clermont Auvergne - Institut national polytechnique Clermont Auvergne - UCA - Université Clermont Auvergne)

Abstract

Le présent travail scientifique propose un outil d'aide à la décision pour accompagner la gestion stratégique de la capacité hospitalière en situation de crise similaire à celle de la Covid-19. Cette pandémie a mis en évidence le manque de préparation des systèmes de santé du monde entier, dont le système de santé français. En suivant les projections de l'évolution de la pandémie tout au long d'un horizon temporel déterminé, il s'agit pour nous de proposer une politique d'activation et de désactivation dynamique des ressources exceptionnelles dégagées par les établissements de santé pour prendre en charge le flux massif de patients généré par la crise. Définir une politique de gestion paraît inéluctable pour éviter toute surchauffe du système et une pause trop longue dans les activités médicales non liées à la crise sanitaire en cours, car les organisations hospitalières ont besoin de planifier à l'avance leurs déploiements importants de capacités. Ces travaux s'appuient sur des prévisions épidémiologiques et a su tenir compte du niveau de confiance accordé à ces prévisions. Nous avons focalisé notre étude sur les lits ouverts en réanimation qui exigent de mobiliser toute une série de ressources à aligner sur les capacités disponibles.

Suggested Citation

  • Thierry Garaix & Camille Breen & Mohamed El Habib Messabis & Raksmey Phan, 2022. "Organisation et monitoring des capacités hospitalières en période de crise," Post-Print hal-04420223, HAL.
  • Handle: RePEc:hal:journl:hal-04420223
    DOI: 10.3917/re1.108.0061
    Note: View the original document on HAL open archive server: https://hal.science/hal-04420223v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04420223v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.3917/re1.108.0061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sanjay Mehrotra & Hamed Rahimian & Masoud Barah & Fengqiao Luo & Karolina Schantz, 2020. "A model of supply‐chain decisions for resource sharing with an application to ventilator allocation to combat COVID‐19," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(5), pages 303-320, August.
    2. Lucas Lacasa & Robert Challen & Ellen Brooks-Pollock & Leon Danon, 2020. "A flexible method for optimising sharing of healthcare resources and demand in the context of the COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-15, October.
    3. Christine S.M. Currie & John W. Fowler & Kathy Kotiadis & Thomas Monks & Bhakti Stephan Onggo & Duncan A. Robertson & Antuela A. Tako, 2020. "How simulation modelling can help reduce the impact of COVID-19," Journal of Simulation, Taylor & Francis Journals, vol. 14(2), pages 83-97, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Xuecheng & Büyüktahtakın, İ. Esra & Patel, Bhumi P., 2023. "COVID-19: Data-Driven optimal allocation of ventilator supply under uncertainty and risk," European Journal of Operational Research, Elsevier, vol. 304(1), pages 255-275.
    2. Fattahi, Mohammad & Keyvanshokooh, Esmaeil & Kannan, Devika & Govindan, Kannan, 2023. "Resource planning strategies for healthcare systems during a pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 192-206.
    3. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    4. Zhi, Bangdong & Wang, Xiaojun & Xu, Fangming, 2022. "Managing inventory financing in a volatile market: A novel data-driven copula model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    5. Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
    6. Gillis, Melissa & Urban, Ryley & Saif, Ahmed & Kamal, Noreen & Murphy, Matthew, 2021. "A simulation–optimization framework for optimizing response strategies to epidemics," Operations Research Perspectives, Elsevier, vol. 8(C).
    7. Biswas, Debajyoti & Alfandari, Laurent, 2022. "Designing an optimal sequence of non‐pharmaceutical interventions for controlling COVID-19," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1372-1391.
    8. Miguel Angel Ortíz-Barrios & Dayana Milena Coba-Blanco & Juan-José Alfaro-Saíz & Daniela Stand-González, 2021. "Process Improvement Approaches for Increasing the Response of Emergency Departments against the COVID-19 Pandemic: A Systematic Review," IJERPH, MDPI, vol. 18(16), pages 1-31, August.
    9. Sawik, Tadeusz, 2022. "Stochastic optimization of supply chain resilience under ripple effect: A COVID-19 pandemic related study," Omega, Elsevier, vol. 109(C).
    10. Qiang Wei & Xinyu Gou & Baiyang Zhang, 2024. "Urban Sharing Logistics Strategies against Epidemic Outbreaks: Its Feasibility and Sustainability," Sustainability, MDPI, vol. 16(17), pages 1-29, September.
    11. Bianco, Débora & Bueno, Adauto & Godinho Filho, Moacir & Latan, Hengky & Miller Devós Ganga, Gilberto & Frank, Alejandro G. & Chiappetta Jabbour, Charbel Jose, 2023. "The role of Industry 4.0 in developing resilience for manufacturing companies during COVID-19," International Journal of Production Economics, Elsevier, vol. 256(C).
    12. Martonosi, Susan E. & Behzad, Banafsheh & Cummings, Kayla, 2021. "Pricing the COVID-19 vaccine: A mathematical approach," Omega, Elsevier, vol. 103(C).
    13. Steven Yin & Shatian Wang & Lingyi Zhang & Christian Kroer, 2020. "Dominant Resource Fairness with Meta-Types," Papers 2007.11961, arXiv.org, revised Aug 2021.
    14. Michael Allen & Amir Bhanji & Jonas Willemsen & Steven Dudfield & Stuart Logan & Thomas Monks, 2020. "A simulation modelling toolkit for organising outpatient dialysis services during the COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-13, August.
    15. Costase Ndayishimiye & Christoph Sowada & Patrycja Dyjach & Agnieszka Stasiak & John Middleton & Henrique Lopes & Katarzyna Dubas-Jakóbczyk, 2022. "Associations between the COVID-19 Pandemic and Hospital Infrastructure Adaptation and Planning—A Scoping Review," IJERPH, MDPI, vol. 19(13), pages 1-22, July.
    16. Gorji, Mohammad-Ali & Shetab-Boushehri, Seyyed-Nader & Akbarzadeh, Meisam, 2023. "Evaluation and improvement of the resilience of a transportation system against epidemic diseases: A system dynamics approach," Transport Policy, Elsevier, vol. 133(C), pages 27-44.
    17. Kazim Topuz & Behrooz Davazdahemami & Dursun Delen, 2024. "A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases," Annals of Operations Research, Springer, vol. 341(1), pages 673-697, October.
    18. Akira Watanabe & Hiroyuki Matsuda, 2023. "Effectiveness of feedback control and the trade-off between death by COVID-19 and costs of countermeasures," Health Care Management Science, Springer, vol. 26(1), pages 46-61, March.
    19. Elaiw, A.M. & Alsaedi, A.J. & Hobiny, A.D. & Aly, S., 2023. "Stability of a delayed SARS-CoV-2 reactivation model with logistic growth and adaptive immune response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    20. Sabah Bushaj & Xuecheng Yin & Arjeta Beqiri & Donald Andrews & İ. Esra Büyüktahtakın, 2023. "A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization," Annals of Operations Research, Springer, vol. 328(1), pages 245-277, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04420223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.