IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04418687.html
   My bibliography  Save this paper

Games with Identical Shapley Values

Author

Listed:
  • Mihai Manea
  • Eric Rémila

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - UL2 - Université Lumière - Lyon 2 - UJM - Université Jean Monnet - Saint-Étienne - EM - EMLyon Business School - CNRS - Centre National de la Recherche Scientifique)

  • Philippe Solal

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - UL2 - Université Lumière - Lyon 2 - UJM - Université Jean Monnet - Saint-Étienne - EM - EMLyon Business School - CNRS - Centre National de la Recherche Scientifique)

  • Sylvain Béal

Abstract

Handbook of the Shapley Value contains 24 chapters and a foreword written by Alvin E. Roth, who was awarded the Nobel Memorial Prize in Economic Sciences jointly with Lloyd Shapley in 2012. The purpose of the book is to highlight a range of relevant insights into the Shapley value. Every chapter has been written to honor Lloyd Shapley, who introduced this fascinating value in 1953. The first chapter, by William Thomson, places the Shapley value in the broader context of the theory of cooperative games, and briefly introduces each of the individual contributions to the volume. This is followed by a further contribution from the editors of the volume, which serves to introduce the more significant features of the Shapley value. The rest of the chapters in the book deal with different theoretical or applied aspects inspired by this interesting value and have been contributed specifically for this volume by leading experts in the area of Game Theory. Chapters 3 through to 10 are more focused on theoretical aspects of the Shapley value, Chapters 11 to 15 are related to both theoretical and applied areas. Finally, from Chapter 16 to Chapter 24, more attention is paid to applications of the Shapley value to different problems encountered across a diverse range of fields. As expressed by William Thomson in the Introduction to the book, "The chapters contribute to the subject in several dimensions: Mathematical foundations; axiomatic foundations; computations; applications to special classes of games; power indices; applications to enriched classes of games; applications to concretely specified allocation problems: an ever-widening range, mapping allocation problems into games or implementation." Nowadays, the Shapley value continues to be as appealing as when it was first introduced in 1953, or perhaps even more so now that its potential is supported by the quantity and quality of the available results. This volume collects a large amount of work that definitively demonstrates that the Shapley value provides answers and solutions to a wide variety of problems.

Suggested Citation

  • Mihai Manea & Eric Rémila & Philippe Solal & Sylvain Béal, 2019. "Games with Identical Shapley Values," Post-Print hal-04418687, HAL.
  • Handle: RePEc:hal:journl:hal-04418687
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dragan, I. & Potters, J.A.M. & Tijs, S.H., 1989. "Superadditivity for solutions of coalitional games," Other publications TiSEM 283e2594-e3a0-418d-ae5e-2, Tilburg University, School of Economics and Management.
    2. Sylvain Béal & Eric Rémila & Philippe Solal, 2016. "Characterizations of Three Linear Values for TU Games by Associated Consistency: Simple Proofs Using the Jordan Normal Form," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-21, March.
    3. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    4. Ulrich Faigle & Michel Grabisch, 2016. "Bases and linear transforms of TU-games and cooperation systems," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 875-892, November.
    5. Gérard Hamiache, 2001. "Associated consistency and Shapley value," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(2), pages 279-289.
    6. Koji Yokote, 2015. "Weak addition invariance and axiomatization of the weighted Shapley value," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(2), pages 275-293, May.
    7. Yokote, Koji & Funaki, Yukihiko & Kamijo, Yoshio, 2016. "A new basis and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 21-24.
    8. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, December.
    9. Ruiz, Luis M. & Valenciano, Federico & Zarzuelo, Jose M., 1998. "The Family of Least Square Values for Transferable Utility Games," Games and Economic Behavior, Elsevier, vol. 24(1-2), pages 109-130, July.
    10. Norman L. Kleinberg & Jeffrey H. Weiss, 1985. "Equivalent N -Person Games and the Null Space of the Shapley Value," Mathematics of Operations Research, INFORMS, vol. 10(2), pages 233-243, May.
    11. Koji Yokote & Yukihiko Funaki, 2015. "Several bases of a game space and an application to the Shapley value," Working Papers 1419, Waseda University, Faculty of Political Science and Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Norman L. Kleinberg, 2018. "A note on associated consistency and linear, symmetric values," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(3), pages 913-925, September.
    2. Roberto Serrano, 2007. "Cooperative Games: Core and Shapley Value," Working Papers wp2007_0709, CEMFI.
    3. Ander Perez-Orive & Andrea Caggese, 2017. "Capital Misallocation and Secular Stagnation," 2017 Meeting Papers 382, Society for Economic Dynamics.
    4. Michel Grabisch & Agnieszka Rusinowska, 2020. "k -additive upper approximation of TU-games," PSE-Ecole d'économie de Paris (Postprint) halshs-02860802, HAL.
    5. C. Manuel & E. González-Arangüena & R. Brink, 2013. "Players indifferent to cooperate and characterizations of the Shapley value," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 1-14, February.
    6. Yokote, Koji & Kongo, Takumi & Funaki, Yukihiko, 2018. "The balanced contributions property for equal contributors," Games and Economic Behavior, Elsevier, vol. 108(C), pages 113-124.
    7. Ulrich Faigle & Michel Grabisch, 2016. "Bases and linear transforms of TU-games and cooperation systems," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 875-892, November.
    8. Wenna Wang & Hao Sun & Rene (J.R.) van den Brink & Genjiu Xu, 2018. "The family of ideal values for cooperative games," Tinbergen Institute Discussion Papers 18-002/II, Tinbergen Institute.
    9. Zhengxing Zou & René Brink & Youngsub Chun & Yukihiko Funaki, 2021. "Axiomatizations of the proportional division value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(1), pages 35-62, July.
    10. Wenna Wang & Hao Sun & René Brink & Genjiu Xu, 2019. "The Family of Ideal Values for Cooperative Games," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 1065-1086, March.
    11. Kongo, T. & Funaki, Y. & Tijs, S.H., 2007. "New Axiomatizations and an Implementation of the Shapley Value," Discussion Paper 2007-90, Tilburg University, Center for Economic Research.
    12. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Characterization of the Average Tree solution and its kernel," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 159-165.
    13. Pierre Dehez, 2017. "On Harsanyi Dividends and Asymmetric Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-36, September.
    14. Navarro, Florian, 2020. "The center value: A sharing rule for cooperative games on acyclic graphs," Mathematical Social Sciences, Elsevier, vol. 105(C), pages 1-13.
    15. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    16. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Axioms of invariance for TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 891-902, November.
    17. Zou, Zhengxing & van den Brink, René & Funaki, Yukihiko, 2021. "Compromising between the proportional and equal division values," Journal of Mathematical Economics, Elsevier, vol. 97(C).
    18. Takaaki Abe & Satoshi Nakada, 2023. "Core stability of the Shapley value for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 60(4), pages 523-543, May.
    19. Yokote, Koji & Funaki, Yukihiko & Kamijo, Yoshio, 2016. "A new basis and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 21-24.
    20. Stefano Moretti & Fioravante Patrone, 2008. "Transversality of the Shapley value," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 1-41, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04418687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.