We modeled long memory with just one lag!
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jeconom.2023.04.010
Note: View the original document on HAL open archive server: https://amu.hal.science/hal-04185755
Download full text from publisher
Other versions of this item:
- Bauwens, Luc & Chevillon, Guillaume & Laurent, Sébastien, 2023. "We modeled long memory with just one lag!," Journal of Econometrics, Elsevier, vol. 236(1).
- Bauwens, Luc & Chevillon, Guillaume & Laurent, Sébastien, 2022. "We modeled long memory with just one lag!," LIDAM Discussion Papers CORE 2022016, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, Luc & Chevillon, Guillaume & Laurent, Sébastien, 2023. "We modeled long memory with just one lag!," LIDAM Reprints CORE 3234, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
References listed on IDEAS
- Francis X. Diebold & Kamil Yilmaz, 2009.
"Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets,"
Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
- FrancisX. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
- Francis X. Diebold & Kamil Yılmaz, 2007. "Measuring Financial Asset Return and Volatility Spillovers, With Application to Global Equity Markets," Koç University-TUSIAD Economic Research Forum Working Papers 0705, Koc University-TUSIAD Economic Research Forum.
- Francis X. Diebold & Kamil Yilmaz, 2008. "Measuring Financial Asset Return and Volatility Spillovers, With Application to Global Equity Markets," NBER Working Papers 13811, National Bureau of Economic Research, Inc.
- Francis X. Diebold & Kamil Yilmaz, 2008. "Measuring financial asset return and volatility spillovers, with application to global equity markets," Working Papers 08-16, Federal Reserve Bank of Philadelphia.
- Diebold, Francis X. & Yilmaz, Kamil, 2007. "Measuring financial asset return and volatility spillovers, with application to global equity markets," CFS Working Paper Series 2007/02, Center for Financial Studies (CFS).
- Diebold, Francis X. & Yilmaz, Kamil, 2008. "Measuring financial asset return and volatilty spillovers, with application to global equity markets," CFS Working Paper Series 2008/26, Center for Financial Studies (CFS).
- Francis X. Diebold & Kamil Yilmaz, 2007. "Measuring Financial Asset Return and Volatility Spillovers, With Application to Global Equity Markets," PIER Working Paper Archive 07-002, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Offer Lieberman & Peter Phillips, 2008.
"Refined Inference on Long Memory in Realized Volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 254-267.
- Offer Lieberman & Peter C. B. Phillips, 2006. "Refined Inference on Long Memory in Realized Volatility," Cowles Foundation Discussion Papers 1549, Cowles Foundation for Research in Economics, Yale University.
- Diebold, Francis X. & Yılmaz, Kamil, 2014.
"On the network topology of variance decompositions: Measuring the connectedness of financial firms,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," Koç University-TUSIAD Economic Research Forum Working Papers 1124, Koc University-TUSIAD Economic Research Forum.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Working Papers 11-45, Federal Reserve Bank of Philadelphia.
- Francis X. Diebold & Kamil Yılmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," PIER Working Paper Archive 11-031, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," NBER Working Papers 17490, National Bureau of Economic Research, Inc.
- Susanne M. Schennach, 2018.
"Long Memory via Networking,"
Econometrica, Econometric Society, vol. 86(6), pages 2221-2248, November.
- Susanne M. Schennach, 2013. "Long memory via networking," CeMMAP working papers 13/13, Institute for Fiscal Studies.
- Susanne M. Schennach, 2018. "Long memory via networking," CeMMAP working papers CWP49/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Susanne M. Schennach, 2013. "Long memory via networking," CeMMAP working papers CWP13/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chevillon, Guillaume & Hendry, David F., 2005.
"Non-parametric direct multi-step estimation for forecasting economic processes,"
International Journal of Forecasting, Elsevier, vol. 21(2), pages 201-218.
- David Hendry & Guillaume Chevillon, 2004. "Non-Parametric Direct Multi-step Estimation for Forecasting Economic Processes," Economics Series Working Papers 196, University of Oxford, Department of Economics.
- Guillaume Chevillon & David F. Hendry, 2004. "Non-Parametric Direct Multi-step Estimation for Forecasting Economic Processes," Economics Papers 2004-W12, Economics Group, Nuffield College, University of Oxford.
- Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012.
"Jump-robust volatility estimation using nearest neighbor truncation,"
Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Jump-Robust Volatility Estimation using Nearest Neighbor Truncation," CREATES Research Papers 2009-52, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2010. "Jump-robust volatility estimation using nearest neighbor truncation," Staff Reports 465, Federal Reserve Bank of New York.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Jump-Robust Volatility Estimation using Nearest Neighbor Truncation," NBER Working Papers 15533, National Bureau of Economic Research, Inc.
- Chudik, Alexander & Pesaran, M. Hashem, 2011.
"Infinite-dimensional VARs and factor models,"
Journal of Econometrics, Elsevier, vol. 163(1), pages 4-22, July.
- Chudik , A. & Pesaran, M.H., 2007. "Infinite Dimensional VARs and Factor Models," Cambridge Working Papers in Economics 0757, Faculty of Economics, University of Cambridge.
- Chudik, Alexander & Pesaran, Hashem, 2009. "Infinite-dimensional VARs and factor models," Working Paper Series 998, European Central Bank.
- Alexander Chudik & M. Hashem Pesaran, 2007. "Infinite Dimensional VARs and Factor Models," CESifo Working Paper Series 2176, CESifo.
- Chudik, Alexander & Pesaran, M. Hashem, 2007. "Infinite Dimensional VARs and Factor Models," IZA Discussion Papers 3206, Institute of Labor Economics (IZA).
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Harvey,Andrew C., 1991.
"Forecasting, Structural Time Series Models and the Kalman Filter,"
Cambridge Books,
Cambridge University Press, number 9780521405737, October.
- Harvey,Andrew C., 1990. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521321969, October.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Anderson, Heather M. & Vahid, Farshid, 2007.
"Forecasting the Volatility of Australian Stock Returns: Do Common Factors Help?,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 76-90, January.
- Heather Anderson & Fashid Vahid, 2005. "Forecasting the Volatility of Australian Stock Returns: Do Common Factors Help?," ANU Working Papers in Economics and Econometrics 2005-451, Australian National University, College of Business and Economics, School of Economics.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2019.
"Priors for the Long Run,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 565-580, April.
- Primiceri, Giorgio & Giannone, Domenico & Lenza, Michele, 2016. "Priors for the Long Run," CEPR Discussion Papers 11261, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2018. "Priors for the long run," Working Paper Series 2132, European Central Bank.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2017. "Priors for the long run," Staff Reports 832, Federal Reserve Bank of New York.
- Schorfheide, Frank, 2005. "VAR forecasting under misspecification," Journal of Econometrics, Elsevier, vol. 128(1), pages 99-136, September.
- Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005.
"Estimating Long Memory in Volatility,"
Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
- Clifford Hurvich & Eric Moulines & Philippe Soulier, 2004. "Estimating Long Memory in Volatility," Econometrics 0412006, University Library of Munich, Germany.
- Chevillon, Guillaume & Hecq, Alain & Laurent, Sébastien, 2018.
"Generating univariate fractional integration within a large VAR(1),"
Journal of Econometrics, Elsevier, vol. 204(1), pages 54-65.
- Guillaume Chevillon & Alain Hecq & Sébastien Laurent, 2018. "Generating Univariate Fractional Integration within a Large VAR(1)," Working Papers halshs-01944588, HAL.
- Guillaume Chevillon & Alain Hecq & Sébastien Laurent, 2018. "Generating Univariate Fractional Integration within a Large VAR(1)," AMSE Working Papers 1844, Aix-Marseille School of Economics, France.
- Guillaume Chevillon & Alain Hecq & Sébastien Laurent, 2018. "Generating univariate fractional integration within a large VAR(1)," Post-Print hal-01980783, HAL.
- M. Hashem Pesaran, 2006.
"Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure,"
Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
- M. Hashem Pesaran, 2004. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," CESifo Working Paper Series 1331, CESifo.
- Fabienne Comte & Eric Renault, 1998.
"Long memory in continuous‐time stochastic volatility models,"
Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
- Comte, F. & Renault, E., 1996. "Long Memory in Continuous Time Stochastic Volatility Models," Papers 96.406, Toulouse - GREMAQ.
- Karlsson, Sune, 2013.
"Forecasting with Bayesian Vector Autoregression,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897,
Elsevier.
- Karlsson, Sune, 2012. "Forecasting with Bayesian Vector Autoregressions," Working Papers 2012:12, Örebro University, School of Business.
- Ulrich K. Müller & Mark W. Watson, 2008.
"Testing Models of Low-Frequency Variability,"
Econometrica, Econometric Society, vol. 76(5), pages 979-1016, September.
- Ulrich Mueller & Mark W. Watson, 2006. "Testing Models of Low-Frequency Variability," NBER Working Papers 12671, National Bureau of Economic Research, Inc.
- Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
- Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Barrio Castro, Tomás del & Escribano, Álvaro & Sibbertsen, Philipp, 2024.
"Modeling and Forecasting the Long Memory of Cyclical Trends in Paleoclimate Data,"
UC3M Working papers. Economics
43987, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- del Barrio Castro, Tomas & Escribano, Alvaro & Sibbertsen, Philipp, 2024. "Modeling and Forecasting the Long Memory of Cyclical Trends in Paleoclimate Data," Hannover Economic Papers (HEP) dp-722, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Anna Mikusheva & Mikkel S{o}lvsten, 2023. "Linear Regression with Weak Exogeneity," Papers 2308.08958, arXiv.org, revised Jan 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013.
"A Markov-switching multifractal inter-trade duration model, with application to US equities,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
- Fei Chen & Francis X. Diebold & Frank Schorfheide, 2012. "A Markov-Switching Multi-Fractal Inter-Trade Duration Model, with Application to U.S. Equities," PIER Working Paper Archive 12-020, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2012. "A Markov-Switching Multi-Fractal Inter-Trade Duration Model, with Application to U.S. Equities," Working Papers 12-09, University of Pennsylvania, Wharton School, Weiss Center.
- Fei Chen & Francis X. Diebold & Frank Schorfheide, 2012. "A Markov-Switching Multi-Fractal Inter-Trade Duration Model, with Application to U.S. Equities," NBER Working Papers 18078, National Bureau of Economic Research, Inc.
- Chevillon, G. & Hecq, A.W. & Laurent, S.F.J.A., 2015.
"Long memory through marginalization of large systems and hidden cross-section dependence,"
Research Memorandum
014, Maastricht University, Graduate School of Business and Economics (GSBE).
- Guillaume Chevillon & Alain Hecq & Sébastien Laurent, 2015. "Long Memory Through Marginalization of Large Systems and Hidden Cross-Section Dependence," Working Papers hal-01158524, HAL.
- Chevillon, Guillaume & Hecq , Alain & Laurent, Sébastien, 2015. "Long Memory Through Marginalization of Large Systems and Hidden Cross-Section Dependence," ESSEC Working Papers WP1507, ESSEC Research Center, ESSEC Business School.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013.
"Financial Risk Measurement for Financial Risk Management,"
Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220,
Elsevier.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2012. "Financial Risk Measurement for Financial Risk Management," NBER Working Papers 18084, National Bureau of Economic Research, Inc.
- Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
- Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
- Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
- Cipollini, Andrea & Lo Cascio, Iolanda & Muzzioli, Silvia, 2018. "Risk aversion connectedness in five European countries," Economic Modelling, Elsevier, vol. 71(C), pages 68-79.
- Gianluca Cubadda & Alain Hecq & Antonio Riccardo, 2018. "Forecasting Realized Volatility Measures with Multivariate and Univariate Models: The Case of The US Banking Sector," CEIS Research Paper 445, Tor Vergata University, CEIS, revised 30 Oct 2018.
- Siem Jan Koopman & Marcel Scharth, 2012.
"The Analysis of Stochastic Volatility in the Presence of Daily Realized Measures,"
Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 76-115, December.
- Siem Jan Koopman & Marcel Scharth, 2011. "The Analysis of Stochastic Volatility in the Presence of Daily Realised Measures," Tinbergen Institute Discussion Papers 11-132/4, Tinbergen Institute.
- Per Frederiksen & Morten Orregaard Nielsen, 2008.
"Bias-Reduced Estimation of Long-Memory Stochastic Volatility,"
Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 496-512, Fall.
- Per Frederiksen & Morten Ørregaard Nielsen, 2008. "Bias-reduced estimation of long memory stochastic volatility," CREATES Research Papers 2008-35, Department of Economics and Business Economics, Aarhus University.
- Pham, Son Duy & Nguyen, Thao Thac Thanh & Do, Hung Xuan & Vo, Xuan Vinh, 2023. "Portfolio diversification during the COVID-19 pandemic: Do vaccinations matter?," Journal of Financial Stability, Elsevier, vol. 65(C).
- Lyócsa, Štefan & Todorova, Neda, 2020. "Trading and non-trading period realized market volatility: Does it matter for forecasting the volatility of US stocks?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 628-645.
- Proietti, Tommaso, 2014.
"Exponential Smoothing, Long Memory and Volatility Prediction,"
MPRA Paper
57230, University Library of Munich, Germany.
- Tommaso Proietti, 2015. "Exponential Smoothing, Long Memory and Volatility Prediction," CREATES Research Papers 2015-51, Department of Economics and Business Economics, Aarhus University.
- Tommaso Proietti, 2014. "Exponential Smoothing, Long Memory and Volatility Prediction," CEIS Research Paper 319, Tor Vergata University, CEIS, revised 30 Jul 2014.
- Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017.
"Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination,"
Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
- Bent Jesper Christensen & Rasmus T. Varneskov, 2015. "Medium Band Least Squares Estimation of Fractional Cointegration in the Presence of Low-Frequency Contamination," CREATES Research Papers 2015-25, Department of Economics and Business Economics, Aarhus University.
- Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
- Lyócsa, Štefan & Plíhal, Tomáš & Výrost, Tomáš, 2021. "FX market volatility modelling: Can we use low-frequency data?," Finance Research Letters, Elsevier, vol. 40(C).
- Rossi, Eduardo & Santucci de Magistris, Paolo, 2013.
"Long memory and tail dependence in trading volume and volatility,"
Journal of Empirical Finance, Elsevier, vol. 22(C), pages 94-112.
- Eduardo Rossi & Paolo Santucci de Magistris, 2009. "Long Memory and Tail dependence in Trading Volume and Volatility," CREATES Research Papers 2009-30, Department of Economics and Business Economics, Aarhus University.
- Li, Jia & Phillips, Peter C. B. & Shi, Shuping & Yu, Jun, 2022.
"Weak Identification of Long Memory with Implications for Inference,"
Economics and Statistics Working Papers
8-2022, Singapore Management University, School of Economics.
- Jia Li & Peter C. B. Phillips & Shuping Shi & Jun Yu, 2022. "Weak Identification of Long Memory with Implications for Inference," Cowles Foundation Discussion Papers 2334, Cowles Foundation for Research in Economics, Yale University.
- Javier Hualde & Morten {O}rregaard Nielsen, 2022.
"Fractional integration and cointegration,"
Papers
2211.10235, arXiv.org.
- Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
- He, Mengxi & Wang, Yudong & Zeng, Qing & Zhang, Yaojie, 2023. "Forecasting aggregate stock market volatility with industry volatilities: The role of spillover index," Research in International Business and Finance, Elsevier, vol. 65(C).
More about this item
Keywords
Bayesian estimation; Ridge regression; Vector autoregressive; model Forecasting;All these keywords.
JEL classification:
- C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04185755. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.