IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03761874.html
   My bibliography  Save this paper

Mitigation Strategies to Improve Reproducibility of Poverty Estimations From Remote Sensing Images Using Deep Learning

Author

Listed:
  • Jeaneth Machicao

    (EPUSP - Departamento de Engenharia da Produção [São Paulo] - Escola Politecnica da Universidade de Sao Paulo [Sao Paulo])

  • Imed Riadh Farah

    (FRB - Fondation pour la recherche sur la Biodiversité, UMA - Université de la Manouba [Tunisie])

  • Leonardo Meneguzzi

    (EPUSP - Departamento de Engenharia da Produção [São Paulo] - Escola Politecnica da Universidade de Sao Paulo [Sao Paulo])

  • Corrêa Pedro Luiz Pizzigatti

    (EPUSP - Departamento de Engenharia da Produção [São Paulo] - Escola Politecnica da Universidade de Sao Paulo [Sao Paulo])

  • Alison Specht

    (UQ [All campuses : Brisbane, Dutton Park Gatton, Herston, St Lucia and other locations] - The University of Queensland)

  • Romain David

    (ERINHA-AISBL - European Research Infrastructure on Highly Pathogenic Agents)

  • Gérard Subsol

    (LIRMM | ICAR - Image & Interaction - LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier - CNRS - Centre National de la Recherche Scientifique - UM - Université de Montpellier)

  • Danton Ferreira Vellenich

    (EPUSP - Departamento de Engenharia da Produção [São Paulo] - Escola Politecnica da Universidade de Sao Paulo [Sao Paulo])

  • Rodolphe Devillers

    (UMR 228 Espace-Dev, Espace pour le développement - IRD - Institut de Recherche pour le Développement - UPVD - Université de Perpignan Via Domitia - AU - Avignon Université - UR - Université de La Réunion - UNC - Université de la Nouvelle-Calédonie - UG - Université de Guyane - UA - Université des Antilles - UM - Université de Montpellier)

  • Shelley Stall

    (American Geophysical Union [Washington])

  • Nicolas Mouquet

    (FRB - Fondation pour la recherche sur la Biodiversité, UNIMES - Université de Nîmes)

  • Marc Chaumont

    (LIRMM | ICAR - Image & Interaction - LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier - CNRS - Centre National de la Recherche Scientifique - UM - Université de Montpellier)

  • Laure Berti-Équille

    (UMR 228 Espace-Dev, Espace pour le développement - IRD - Institut de Recherche pour le Développement - UPVD - Université de Perpignan Via Domitia - AU - Avignon Université - UR - Université de La Réunion - UNC - Université de la Nouvelle-Calédonie - UG - Université de Guyane - UA - Université des Antilles - UM - Université de Montpellier)

  • David Mouillot

    (UMR MARBEC PALAVAS - MARine Biodiversity Exploitation and Conservation - Station Ifremer Palavas - UMR MARBEC - MARine Biodiversity Exploitation and Conservation - MARBEC - IRD - Institut de Recherche pour le Développement - IFREMER - Institut Français de Recherche pour l'Exploitation de la Mer - CNRS - Centre National de la Recherche Scientifique - UM - Université de Montpellier, UM - Université de Montpellier)

Abstract

The challenges of Reproducibility and Replicability (R & R) in computer science experiments have become a focus of attention in the last decade, as efforts to adhere to good research practices have increased. However, experiments using Deep Learning (DL) remain difficult to reproduce due to the complexity of the techniques used. Challenges such as estimating poverty indicators (e.g. wealth index levels) from remote sensing imagery, requiring the use of huge volumes of data across different geographic locations, would be impossible without the use of DL technology. To test the reproducibility of DL experiments, we report a review of the reproducibility of three DL experiments which analyse visual indicators from satellite and street imagery. For each experiment, we identify the challenges found in the datasets, methods and workflows used. As a result of this assessment we propose a checklist incorporating relevant FAIR principles to screen an experiment for its reproducibility. Based on the lessons learned from this study, we recommend a set of actions aimed to improve the reproducibility of such experiments and reduce the likelihood of wasted effort. We believe that the target audience is broad, from researchers seeking to reproduce an experiment, authors reporting an experiment, or reviewers seeking to assess the work of others.

Suggested Citation

  • Jeaneth Machicao & Imed Riadh Farah & Leonardo Meneguzzi & Corrêa Pedro Luiz Pizzigatti & Alison Specht & Romain David & Gérard Subsol & Danton Ferreira Vellenich & Rodolphe Devillers & Shelley Stall , 2022. "Mitigation Strategies to Improve Reproducibility of Poverty Estimations From Remote Sensing Images Using Deep Learning," Post-Print hal-03761874, HAL.
  • Handle: RePEc:hal:journl:hal-03761874
    DOI: 10.1029/2022ea002379
    Note: View the original document on HAL open archive server: https://hal.science/hal-03761874v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03761874v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1029/2022ea002379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ryan Engstrom & Jonathan Hersh & David Newhouse, 2022. "Poverty from Space: Using High Resolution Satellite Imagery for Estimating Economic Well-being," The World Bank Economic Review, World Bank, vol. 36(2), pages 382-412.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbate Nicolás & Gasparini Leonardo & Gluzmann Pablo Alfredo & Montes Rojas Gabriel & Sznaider Iván & Yatche Tobías, 2023. "Ingreso Estructural Por Área Geográfica: una aplicación para Argentina," Asociación Argentina de Economía Política: Working Papers 4622, Asociación Argentina de Economía Política.
    2. Lee, Kamwoo & Braithwaite, Jeanine, 2022. "High-resolution poverty maps in Sub-Saharan Africa," World Development, Elsevier, vol. 159(C).
    3. Guanghua Chi & Han Fang & Sourav Chatterjee & Joshua E. Blumenstock, 2022. "Microestimates of wealth for all low- and middle-income countries," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 119(3), pages 2113658119-, January.
    4. Piotr Wójcik & Krystian Andruszek, 2022. "Predicting intra‐urban well‐being from space with nonlinear machine learning," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(4), pages 891-913, August.
    5. Ola Hall & Francis Dompae & Ibrahim Wahab & Fred Mawunyo Dzanku, 2023. "A review of machine learning and satellite imagery for poverty prediction: Implications for development research and applications," Journal of International Development, John Wiley & Sons, Ltd., vol. 35(7), pages 1753-1768, October.
    6. Guberney Muñetón-Santa & Daniel Escobar-Grisales & Felipe Orlando López-Pabón & Paula Andrea Pérez-Toro & Juan Rafael Orozco-Arroyave, 2022. "Classification of Poverty Condition Using Natural Language Processing," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 162(3), pages 1413-1435, August.
    7. Batana,Yele Maweki & Masaki,Takaaki & Nakamura,Shohei & Viboudoulou Vilpoux,Mervy Ever, 2021. "Estimating Poverty in Kinshasa by Dealing with Sampling and Comparability Issues," Policy Research Working Paper Series 9858, The World Bank.
    8. Kotlikoff, Laurence J. & Lagarda, Guillermo & Marin, Gabriel, 2023. "A Personalized VAT with Capital Transfers: A Reform to Protect Low-Income Households in Mexico," IDB Publications (Working Papers) 12985, Inter-American Development Bank.
    9. Hannes Öhler & Mario Negre & Lodewijk Smets & Renzo Massari & Željko Bogetić, 2019. "Putting your money where your mouth is: Geographic targeting of World Bank projects to the bottom 40 percent," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-19, June.
    10. Kamwoo Lee & Jeanine Braithwaite, 2020. "High-Resolution Poverty Maps in Sub-Saharan Africa," Papers 2009.00544, arXiv.org, revised May 2021.
    11. Emily Aiken & Guadalupe Bedoya & Joshua Blumenstock & Aidan Coville, 2022. "Program Targeting with Machine Learning and Mobile Phone Data: Evidence from an Anti-Poverty Intervention in Afghanistan," Papers 2206.11400, arXiv.org.
    12. Newhouse David, 2020. "Discussion of “Small area estimation: its evolution in five decades”, by Malay Ghosh," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 45-50, August.
    13. Rasheed O. Alao & Andrew A. Alola, 2022. "The role of foreign aids and income inequality in poverty reduction: A sustainable development approach for Africa?," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 24(2), pages 456-469, December.
    14. Ryan Engstrom & David Newhouse & Vidhya Soundararajan, 2020. "Estimating small-area population density in Sri Lanka using surveys and Geo-spatial data," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-20, August.
    15. Jung, Woojin, 2023. "Mapping community development aid: Spatial analysis in Myanmar," World Development, Elsevier, vol. 164(C).
    16. Hannes Mueller & Andre Groger & Jonathan Hersh & Andrea Matranga & Joan Serrat, 2020. "Monitoring War Destruction from Space: A Machine Learning Approach," Papers 2010.05970, arXiv.org, revised Oct 2020.
    17. Masaki,Takaaki & Newhouse,David Locke & Silwal,Ani Rudra & Bedada,Adane & Engstrom,Ryan, 2020. "Small Area Estimation of Non-Monetary Poverty with Geospatial Data," Policy Research Working Paper Series 9383, The World Bank.
    18. Linden McBride & Christopher B. Barrett & Christopher Browne & Leiqiu Hu & Yanyan Liu & David S. Matteson & Ying Sun & Jiaming Wen, 2022. "Predicting poverty and malnutrition for targeting, mapping, monitoring, and early warning," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(2), pages 879-892, June.
    19. Hai‐Anh H. Dang, 2021. "To impute or not to impute, and how? A review of poverty‐estimation methods in the absence of consumption data," Development Policy Review, Overseas Development Institute, vol. 39(6), pages 1008-1030, November.
    20. Hannes Mueller & André Groeger & Jonathan Hersh & Andrea Matranga & Joan Serrat, 2021. "Monitoring War Destruction from Space Using Machine Learning," Working Papers 1257, Barcelona School of Economics.

    More about this item

    Keywords

    Reproducibility; Replicability; Deep learning; Machine learning; FAIR; poverty indicators;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03761874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.