IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0237063.html
   My bibliography  Save this article

Estimating small-area population density in Sri Lanka using surveys and Geo-spatial data

Author

Listed:
  • Ryan Engstrom
  • David Newhouse
  • Vidhya Soundararajan

Abstract

Country-level census data are typically collected once every 10 years. However, conflicts, migration, urbanization, and natural disasters can rapidly shift local population patterns. This study demonstrates the feasibility of a “bottom-up”-method to estimate local population density in the between-census years by combining household surveys with contemporaneous geo-spatial data, including village-area and satellite imagery-based indicators. We apply this technique to the case of Sri Lanka using Poisson regression models based on variables selected using the Least Absolute Shrinkage and Selection Operator (LASSO). The model is estimated in villages sampled in the 2012/13 Household Income and Expenditure Survey, and is employed to obtain out-of-sample density estimates in the non-surveyed villages. These estimates approximate the census density accurately and are more precise than other bottom-up studies using similar geo-spatial data. While most open-source population products redistribute census population “top-down” from higher to lower spatial units using areal interpolation and dasymetric mapping techniques, these products become less accurate as the census itself ages. Our method circumvents the problem of the aging census by relying instead on more up-to-date household surveys. The collective evidence suggests that our method is cost effective in tracking local population density with greater frequency in the between-census years.

Suggested Citation

  • Ryan Engstrom & David Newhouse & Vidhya Soundararajan, 2020. "Estimating small-area population density in Sri Lanka using surveys and Geo-spatial data," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-20, August.
  • Handle: RePEc:plo:pone00:0237063
    DOI: 10.1371/journal.pone.0237063
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237063
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0237063&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0237063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ryan Engstrom & Jonathan Hersh & David Newhouse, 2022. "Poverty from Space: Using High Resolution Satellite Imagery for Estimating Economic Well-being," The World Bank Economic Review, World Bank, vol. 36(2), pages 382-412.
    2. Jeffrey M. Wooldridge, 2002. "Inverse probability weighted M-estimators for sample selection, attrition, and stratification," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 117-139, August.
    3. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    4. Mobarak, Ahmed & Levinsohn, James & Guiteras, Raymond, 2019. "Demand Estimation with Strategic Complementarities: Sanitation in Bangladesh," CEPR Discussion Papers 13498, C.E.P.R. Discussion Papers.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dylan Brewer & Alyssa Carlson, 2024. "Addressing sample selection bias for machine learning methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 383-400, April.
    2. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    3. Patrick Bajari & Victor Chernozhukov & Ali Hortaçsu & Junichi Suzuki, 2019. "The Impact of Big Data on Firm Performance: An Empirical Investigation," AEA Papers and Proceedings, American Economic Association, vol. 109, pages 33-37, May.
    4. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    5. Nathan, Max & Rosso, Anna, 2014. "Mapping information economy businesses with big data: findings from the UK," LSE Research Online Documents on Economics 60615, London School of Economics and Political Science, LSE Library.
    6. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    7. Nicodemo, Catia & Satorra, Albert, 2020. "Exploratory Data Analysis on Large Data Sets: The Example of Salary Variation in Spanish Social Security Data," IZA Discussion Papers 13459, Institute of Labor Economics (IZA).
    8. Harsha Thirumurthy & Joshua Graff Zivin & Markus Goldstein, 2008. "The Economic Impact of AIDS Treatment: Labor Supply in Western Kenya," Journal of Human Resources, University of Wisconsin Press, vol. 43(3), pages 511-552.
    9. Crossley, Thomas F. & Fisher, Paul & Low, Hamish, 2021. "The heterogeneous and regressive consequences of COVID-19: Evidence from high quality panel data," Journal of Public Economics, Elsevier, vol. 193(C).
    10. Duclos, Jean-Yves & Araar, Abdelkrim & Giles, John, 2010. "Chronic and transient poverty: Measurement and estimation, with evidence from China," Journal of Development Economics, Elsevier, vol. 91(2), pages 266-277, March.
    11. Robert D. J. Anderson, 2008. "US Consumer Inflation Expectations: Evidence Regarding Learning, Accuracy and Demographics," Centre for Growth and Business Cycle Research Discussion Paper Series 99, Economics, The University of Manchester.
    12. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    13. Sharma, Rajesh & Shahbaz, Muhammad & Sinha, Avik & Vo, Xuan Vinh, 2021. "Examining the temporal impact of stock market development on carbon intensity: Evidence from South Asian countries," MPRA Paper 108925, University Library of Munich, Germany, revised 2021.
    14. Lionel WILNER, 2019. "The Dynamics of Individual Happiness," Working Papers 2019-18, Center for Research in Economics and Statistics.
    15. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    16. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    17. Lidia Ceriani & Sergio Olivieri & Marco Ranzani, 2023. "Housing, imputed rent, and household welfare," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 21(1), pages 131-168, March.
    18. Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020. "Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
    19. Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    20. Patricia Cubí‐Mollá & Mireia Jofre‐Bonet & Victoria Serra‐Sastre, 2017. "Adaptation to health states: Sick yet better off?," Health Economics, John Wiley & Sons, Ltd., vol. 26(12), pages 1826-1843, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0237063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.