IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03727378.html
   My bibliography  Save this paper

Nobel laurates and the role of the industry in the emergence of new scientific breakthroughs

Author

Listed:
  • Quentin Plantec

    (TSM - Toulouse School of Management Research - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - CNRS - Centre National de la Recherche Scientifique - TSM - Toulouse School of Management - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse)

  • Pascal Le Masson

    (CGS i3 - Centre de Gestion Scientifique i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique)

  • Benoît Weil

    (CGS i3 - Centre de Gestion Scientifique i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique)

Abstract

Since the 1980s, many companies recognized for their major scientific breakthroughs (e.g., IBM, AT&T, etc.), cut their investments in fundamental research activities. In parallel, academics from public research organizations (PRO) and universities engaged more extensively with the industry through research collaborations. The conditions, determinants, and effects of academic engagement have been deeply analyzed. But, the extent to which major scientific breakthroughs of the last century have emerged either from (1) academics and researchers with no interaction with the industry or (2) from scientists interacting with the industry-either as engaged academics belonging to PRO or universities or as corporate scientistsare yet to be more systematically documented. To fill this gap, we explored the extent to which scientists from the quasi-complete cohort of Nobel laureates in Physics, Medicine, and Chemistry were interacting with the industry before their breakthrough discoveries. We designed a unique dataset of their ties with the industry based on affiliations review of 84,423 academic papers and applicant review of 5,207 patent families. First, we showed that one-fifth of the studied cohort of laureates was interacting with the industry before their breakthrough discovery. More importantly, this share is still increasing, mainly through academic engagement, while the share of awarded corporate scientists has remained stable since 1970. Second, we were able to analyze the effects of those interactions with the industry on the post-discovery period by comparing interacting and noninteracting with industry laureates' follow-on research works. While some scientific discoveries were partly made possible thanks to Nobel laureates' industrial partners, those laureates' follow-on knowledge works were not bound to their initial sets of partners. They experienced similar knowledge diffusion-to-industry rates than other laureates but higher academic production rates and diffusion-to-academia rates. Finally, we claim that the extent to which scientific new knowledge still emerges in relation to industrial contexts in modern science has been underevaluated and opens rooms for further research.

Suggested Citation

  • Quentin Plantec & Pascal Le Masson & Benoît Weil, 2022. "Nobel laurates and the role of the industry in the emergence of new scientific breakthroughs," Post-Print hal-03727378, HAL.
  • Handle: RePEc:hal:journl:hal-03727378
    Note: View the original document on HAL open archive server: https://minesparis-psl.hal.science/hal-03727378v1
    as

    Download full text from publisher

    File URL: https://minesparis-psl.hal.science/hal-03727378v1/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Etzkowitz, Henry & Leydesdorff, Loet, 2000. "The dynamics of innovation: from National Systems and "Mode 2" to a Triple Helix of university-industry-government relations," Research Policy, Elsevier, vol. 29(2), pages 109-123, February.
    2. Benjamin F. Jones, 2009. "The Burden of Knowledge and the "Death of the Renaissance Man": Is Innovation Getting Harder?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(1), pages 283-317.
    3. J Calvert & P Patel, 2003. "University-industry research collaborations in the UK: Bibliometric trends," Science and Public Policy, Oxford University Press, vol. 30(2), pages 85-96, April.
    4. Thomas Gillier & Sylvain Lenfle, 2019. "Experimenting in the Unknown: Lessons from The Manhattan Project," Grenoble Ecole de Management (Post-Print) hal-03163267, HAL.
    5. Hottenrott, Hanna & Lawson, Cornelia, 2017. "Fishing for complementarities: Research grants and research productivity," International Journal of Industrial Organization, Elsevier, vol. 51(C), pages 1-38.
    6. Gulbrandsen, Magnus & Smeby, Jens-Christian, 2005. "Industry funding and university professors' research performance," Research Policy, Elsevier, vol. 34(6), pages 932-950, August.
    7. Mowery, David C. & Nelson, Richard R. & Sampat, Bhaven N. & Ziedonis, Arvids A., 2001. "The growth of patenting and licensing by U.S. universities: an assessment of the effects of the Bayh-Dole act of 1980," Research Policy, Elsevier, vol. 30(1), pages 99-119, January.
    8. Siegel, Donald S. & Waldman, David & Link, Albert, 2003. "Assessing the impact of organizational practices on the relative productivity of university technology transfer offices: an exploratory study," Research Policy, Elsevier, vol. 32(1), pages 27-48, January.
    9. Banal-Estañol, Albert & Jofre-Bonet, Mireia & Lawson, Cornelia, 2015. "The double-edged sword of industry collaboration: Evidence from engineering academics in the UK," Research Policy, Elsevier, vol. 44(6), pages 1160-1175.
    10. Riccardo Crescenzi & Andrea Filippetti & Simona Iammarino, 2017. "Academic inventors: collaboration and proximity with industry," The Journal of Technology Transfer, Springer, vol. 42(4), pages 730-762, August.
    11. Fiona Murray & Philippe Aghion & Mathias Dewatripont & Julian Kolev & Scott Stern, 2016. "Of Mice and Academics: Examining the Effect of Openness on Innovation," American Economic Journal: Economic Policy, American Economic Association, vol. 8(1), pages 212-252, February.
    12. Dirk Czarnitzki & Christoph Grimpe & Andrew A. Toole, 2015. "Delay and secrecy: does industry sponsorship jeopardize disclosure of academic research?," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(1), pages 251-279.
    13. Albert Banal-Estañol & Mireia Jofre-Bonet & Cornelia Meissner, 2008. "Theimpact of industry collaboration on research: Evidence from engineering academics in the UK," Economics Working Papers 1190, Department of Economics and Business, Universitat Pompeu Fabra, revised Aug 2010.
    14. Tartari, Valentina & Perkmann, Markus & Salter, Ammon, 2014. "In good company: The influence of peers on industry engagement by academic scientists," Research Policy, Elsevier, vol. 43(7), pages 1189-1203.
    15. Goldstein, Anna P. & Narayanamurti, Venkatesh, 2018. "Simultaneous pursuit of discovery and invention in the US Department of Energy," Research Policy, Elsevier, vol. 47(8), pages 1505-1512.
    16. Baba, Yasunori & Shichijo, Naohiro & Sedita, Silvia Rita, 2009. "How do collaborations with universities affect firms' innovative performance? The role of "Pasteur scientists" in the advanced materials field," Research Policy, Elsevier, vol. 38(5), pages 756-764, June.
    17. Tijssen, Robert J. W., 2004. "Is the commercialisation of scientific research affecting the production of public knowledge?: Global trends in the output of corporate research articles," Research Policy, Elsevier, vol. 33(5), pages 709-733, July.
    18. Balconi, Margherita & Laboranti, Andrea, 2006. "University-industry interactions in applied research: The case of microelectronics," Research Policy, Elsevier, vol. 35(10), pages 1616-1630, December.
    19. Gary P. Pisano, 2010. "The evolution of science-based business: innovating how we innovate," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 19(2), pages 465-482, April.
    20. Frank T. Rothaermel & Shanti D. Agung & Lin Jiang, 2007. "University entrepreneurship: a taxonomy of the literature," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 16(4), pages 691-791, August.
    21. Yusuf, Shahid, 2008. "Intermediating knowledge exchange between universities and businesses," Research Policy, Elsevier, vol. 37(8), pages 1167-1174, September.
    22. Mukherjee, Arijit & Stern, Scott, 2009. "Disclosure or secrecy? The dynamics of Open Science," International Journal of Industrial Organization, Elsevier, vol. 27(3), pages 449-462, May.
    23. Jung, Hyun Ju & Lee, Jeongsik “Jay”, 2014. "The impacts of science and technology policy interventions on university research: Evidence from the U.S. National Nanotechnology Initiative," Research Policy, Elsevier, vol. 43(1), pages 74-91.
    24. Matt Marx & Aaron Fuegi, 2020. "Reliance on science: Worldwide front‐page patent citations to scientific articles," Strategic Management Journal, Wiley Blackwell, vol. 41(9), pages 1572-1594, September.
    25. Ashish Arora & Sharon Belenzon & Andrea Patacconi, 2018. "The decline of science in corporate R&D," Strategic Management Journal, Wiley Blackwell, vol. 39(1), pages 3-32, January.
    26. Goldfarb, Brent, 2008. "The effect of government contracting on academic research: Does the source of funding affect scientific output," Research Policy, Elsevier, vol. 37(1), pages 41-58, February.
    27. Mowery, David C & Oxley, Joanne E, 1995. "Inward Technology Transfer and Competitiveness: The Role of National Innovation Systems," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 19(1), pages 67-93, February.
    28. D'Este, P. & Patel, P., 2007. "University-industry linkages in the UK: What are the factors underlying the variety of interactions with industry?," Research Policy, Elsevier, vol. 36(9), pages 1295-1313, November.
    29. Mansfield, Edwin, 1995. "Academic Research Underlying Industrial Innovations:," The Review of Economics and Statistics, MIT Press, vol. 77(1), pages 55-65, February.
    30. Anckaert, Paul-Emmanuel & Cassiman, David & Cassiman, Bruno, 2020. "Fostering practice-oriented and use-inspired science in biomedical research," Research Policy, Elsevier, vol. 49(2).
    31. Perkmann, Markus & Tartari, Valentina & McKelvey, Maureen & Autio, Erkko & Broström, Anders & D’Este, Pablo & Fini, Riccardo & Geuna, Aldo & Grimaldi, Rosa & Hughes, Alan & Krabel, Stefan & Kitson, Mi, 2013. "Academic engagement and commercialisation: A review of the literature on university–industry relations," Research Policy, Elsevier, vol. 42(2), pages 423-442.
    32. Jerry G. Thursby & Marie C. Thursby, 2002. "Who Is Selling the Ivory Tower? Sources of Growth in University Licensing," Management Science, INFORMS, vol. 48(1), pages 90-104, January.
    33. Giovanni Abramo & Ciriaco Andrea D’Angelo & Marco Solazzi, 2010. "Assessing public–private research collaboration: is it possible to compare university performance?," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(1), pages 173-197, July.
    34. Lee, Yong S, 2000. "The Sustainability of University-Industry Research Collaboration: An Empirical Assessment," The Journal of Technology Transfer, Springer, vol. 25(2), pages 111-133, June.
    35. Pierre Azoulay & Waverly Ding & Toby Stuart, 2009. "The Impact Of Academic Patenting On The Rate, Quality And Direction Of (Public) Research Output," Journal of Industrial Economics, Wiley Blackwell, vol. 57(4), pages 637-676, December.
    36. David C. Mowery, 2009. "Plus ca change," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 18(1), pages 1-50, February.
    37. Michaël Bikard & Keyvan Vakili & Florenta Teodoridis, 2019. "When Collaboration Bridges Institutions: The Impact of University–Industry Collaboration on Academic Productivity," Organization Science, INFORMS, vol. 30(2), pages 426-445, March.
    38. Giovanni Abramo & Ciriaco Andrea D’Angelo & Marco Solazzi, 2012. "A bibliometric tool to assess the regional dimension of university–industry research collaborations," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 955-975, June.
    39. Aldridge, T. Taylor & Audretsch, David, 2011. "The Bayh-Dole Act and scientist entrepreneurship," Research Policy, Elsevier, vol. 40(8), pages 1058-1067, October.
    40. Thomas Gillier & Sylvain Lenfle, 2019. "Experimenting in the Unknown: Lessons from The Manhattan Project," Post-Print hal-03163267, HAL.
    41. Perkmann, Markus & Salandra, Rossella & Tartari, Valentina & McKelvey, Maureen & Hughes, Alan, 2021. "Academic engagement: A review of the literature 2011-2019," Research Policy, Elsevier, vol. 50(1).
    42. Ajay Bhaskarabhatla & Deepak Hegde, 2014. "An Organizational Perspective on Patenting and Open Innovation," Organization Science, INFORMS, vol. 25(6), pages 1744-1763, December.
    43. Balconi, Margherita & Breschi, Stefano & Lissoni, Francesco, 2004. "Networks of inventors and the role of academia: an exploration of Italian patent data," Research Policy, Elsevier, vol. 33(1), pages 127-145, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quentin Plantec & Pascal Le Masson & Benoit Weil, 2021. "Another way to get the Nobel Prize: the role of the industry in the emergence of new scientific breakthroughs," Post-Print halshs-03278662, HAL.
    2. Quentin Plantec & Benjamin Cabanes & Pascal Le Masson & Benoit Weil, 2021. "Market-Pull Or Research Push? Effects Of Research Orientations On University-Industry Collaborative Ph.D. Projects' Performances," Post-Print halshs-03190142, HAL.
    3. Plantec, Quentin & Cabanes, Benjamin & le Masson, Pascal & Weil, Benoit, 2023. "Early-career academic engagement in university–industry collaborative PhDs: Research orientation and project performance," Research Policy, Elsevier, vol. 52(9).
    4. Blandinieres, Florence & Pellens, Maikel, 2021. "Scientist's industry engagement and the research agenda: Evidence from Germany," ZEW Discussion Papers 21-001, ZEW - Leibniz Centre for European Economic Research.
    5. Banal-Estañol, Albert & Jofre-Bonet, Mireia & Lawson, Cornelia, 2015. "The double-edged sword of industry collaboration: Evidence from engineering academics in the UK," Research Policy, Elsevier, vol. 44(6), pages 1160-1175.
    6. Alessandra Scandura & Simona Iammarino, 2022. "Academic engagement with industry: the role of research quality and experience," The Journal of Technology Transfer, Springer, vol. 47(4), pages 1000-1036, August.
    7. Uwe Cantner & Martin Kalthaus & Indira Yarullina, 2024. "Outcomes of science-industry collaboration: factors and interdependencies," The Journal of Technology Transfer, Springer, vol. 49(2), pages 542-580, April.
    8. Perkmann, Markus & Salandra, Rossella & Tartari, Valentina & McKelvey, Maureen & Hughes, Alan, 2021. "Academic engagement: A review of the literature 2011-2019," Research Policy, Elsevier, vol. 50(1).
    9. Albert Banal-Estañol & Inés Macho-Stadler & David Pérez-Castrillo, 2011. "Research Output from University-Industry Collaborative Projects," Working Papers 539, Barcelona Graduate School of Economics.
    10. Hottenrott, Hanna & Lawson, Cornelia, 2017. "Fishing for complementarities: Research grants and research productivity," International Journal of Industrial Organization, Elsevier, vol. 51(C), pages 1-38.
    11. Igors Skute & Kasia Zalewska-Kurek & Isabella Hatak & Petra Weerd-Nederhof, 2019. "Mapping the field: a bibliometric analysis of the literature on university–industry collaborations," The Journal of Technology Transfer, Springer, vol. 44(3), pages 916-947, June.
    12. Crespi, Gustavo & D'Este, Pablo & Fontana, Roberto & Geuna, Aldo, 2011. "The impact of academic patenting on university research and its transfer," Research Policy, Elsevier, vol. 40(1), pages 55-68, February.
    13. Roman Fudickar & Hanna Hottenrott & Cornelia Lawson, 2018. "What’s the price of academic consulting? Effects of public and private sector consulting on academic research," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(4), pages 699-722.
    14. Perkmann, Markus & King, Zella & Pavelin, Stephen, 2011. "Engaging excellence? Effects of faculty quality on university engagement with industry," Research Policy, Elsevier, vol. 40(4), pages 539-552, May.
    15. Fudickar, Roman & Hottenrott, Hanna & Lawson, Cornelia, 2016. "What's the price of consulting? Effects of public and private sector consulting on academic research," DICE Discussion Papers 212, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    16. Perkmann, Markus & Tartari, Valentina & McKelvey, Maureen & Autio, Erkko & Broström, Anders & D’Este, Pablo & Fini, Riccardo & Geuna, Aldo & Grimaldi, Rosa & Hughes, Alan & Krabel, Stefan & Kitson, Mi, 2013. "Academic engagement and commercialisation: A review of the literature on university–industry relations," Research Policy, Elsevier, vol. 42(2), pages 423-442.
    17. Albert Banal-Estañol & Inés Macho-Stadler & David Pérez-Castrillo, 2013. "Research Output From University–Industry Collaborative Projects," Economic Development Quarterly, , vol. 27(1), pages 71-81, February.
    18. Nasirov, Shukhrat & Joshi, Amol M., 2023. "Minding the communications gap: How can universities signal the availability and value of their scientific knowledge to commercial organizations?," Research Policy, Elsevier, vol. 52(9).
    19. Chai, Sen & Shih, Willy, 2016. "Bridging science and technology through academic–industry partnerships," Research Policy, Elsevier, vol. 45(1), pages 148-158.
    20. Michaël Bikard & Keyvan Vakili & Florenta Teodoridis, 2019. "When Collaboration Bridges Institutions: The Impact of University–Industry Collaboration on Academic Productivity," Organization Science, INFORMS, vol. 30(2), pages 426-445, March.

    More about this item

    Keywords

    Scientific discovery; University-Industry collaborations; Nobel Prize; New Product Development; Knowledge absorption; Academic engagement;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03727378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.