IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03501949.html
   My bibliography  Save this paper

Quantifying co-benefit potentials in the Chinese cement sector during 12th Five Year Plan: an analysis based on marginal abatement cost with monetized environmental effect

Author

Listed:
  • Yang Xi

    (THU - Tsinghua University [Beijing])

  • Teng Fei

    (THU - Tsinghua University [Beijing])

  • Wang Gehua

    (THU - Tsinghua University [Beijing])

Abstract

Increasing urbanization in China has led to growing demands for better air quality and human welfare. Global warming and local pollutants, such as SO2, NOx and PMs are the two main issues during China's development. However, these two topics are always studied separately and the co-benefits of mitigation measures are always ignored. Therefore, the interaction between carbon mitigation and local pollutant reduction measures should receive more attention. This paper presents a case study of co-benefits in the cement sector, which is the main building materials sector during urbanization. Different with the Ex-ternE methodology based on doseeresponse functions, a simplified method built upon benefit transfer is introduced to evaluate the co-benefits of mitigation measures and their impact on marginal abatement cost during 12th Five Year Plan period (2011 e2015). The result shows that the co-benefits of 18 main carbon mitigation technologies are significant when considering the environmental effect. The range of co-benefit varies from-3 RMB/tCO2 to 267 RMB/tCO2, with Co-control technologies in the upstream of the production chain have better co-benefits than downstream technologies, and energy conservation is the most critical issue in increasing co-benefits. Co-benefits should be integrated into project evaluation through various modes in order to promote the most cost-effective mitigation technologies.

Suggested Citation

  • Yang Xi & Teng Fei & Wang Gehua, 2013. "Quantifying co-benefit potentials in the Chinese cement sector during 12th Five Year Plan: an analysis based on marginal abatement cost with monetized environmental effect," Post-Print hal-03501949, HAL.
  • Handle: RePEc:hal:journl:hal-03501949
    DOI: 10.1016/j.jclepro.2013.07.020
    Note: View the original document on HAL open archive server: https://hal.science/hal-03501949
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03501949/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jclepro.2013.07.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bollen, Johannes & van der Zwaan, Bob & Brink, Corjan & Eerens, Hans, 2009. "Local air pollution and global climate change: A combined cost-benefit analysis," Resource and Energy Economics, Elsevier, vol. 31(3), pages 161-181, August.
    2. Zhang, Qingyu & Weili, Tian & Yumei, Wei & Yingxu, Chen, 2007. "External costs from electricity generation of China up to 2030 in energy and abatement scenarios," Energy Policy, Elsevier, vol. 35(8), pages 4295-4304, August.
    3. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    4. Burtraw, Dallas & Krupnick, Alan & Palmer, Karen & Paul, Anthony & Toman, Michael & Bloyd, Cary, 2003. "Ancillary benefits of reduced air pollution in the US from moderate greenhouse gas mitigation policies in the electricity sector," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 650-673, May.
    5. Krewitt, Wolfram & Heck, Thomas & Trukenmuller, Alfred & Friedrich, Rainer, 1999. "Environmental damage costs from fossil electricity generation in Germany and Europe," Energy Policy, Elsevier, vol. 27(3), pages 173-183, March.
    6. Jones, Donald W., 1991. "How urbanization affects energy-use in developing countries," Energy Policy, Elsevier, vol. 19(7), pages 621-630, September.
    7. Pardo, Nicolás & Moya, José Antonio & Mercier, Arnaud, 2011. "Prospective on the energy efficiency and CO2 emissions in the EU cement industry," Energy, Elsevier, vol. 36(5), pages 3244-3254.
    8. Kumar Mandal, Sabuj & Madheswaran, S., 2010. "Environmental efficiency of the Indian cement industry: An interstate analysis," Energy Policy, Elsevier, vol. 38(2), pages 1108-1118, February.
    9. Hasanbeigi, Ali & Menke, Christoph & Therdyothin, Apichit, 2010. "The use of conservation supply curves in energy policy and economic analysis: The case study of Thai cement industry," Energy Policy, Elsevier, vol. 38(1), pages 392-405, January.
    10. Aunan, Kristin & Fang, Jinghua & Vennemo, Haakon & Oye, Kenneth & Seip, Hans M., 2004. "Co-benefits of climate policy--lessons learned from a study in Shanxi, China," Energy Policy, Elsevier, vol. 32(4), pages 567-581, March.
    11. Dudek, Dan & Golub, Alexander & Strukova, Elena, 2003. "Ancillary Benefits of Reducing Greenhouse Gas Emissions in Transitional Economies," World Development, Elsevier, vol. 31(10), pages 1759-1769, October.
    12. Hasanbeigi, Ali & Price, Lynn & Lu, Hongyou & Lan, Wang, 2010. "Analysis of energy-efficiency opportunities for the cement industry in Shandong Province, China: A case study of 16 cement plants," Energy, Elsevier, vol. 35(8), pages 3461-3473.
    13. Zhang, Na & Lior, Noam & Jin, Hongguang, 2011. "The energy situation and its sustainable development strategy in China," Energy, Elsevier, vol. 36(6), pages 3639-3649.
    14. Klaassen, Ger & Riahi, Keywan, 2007. "Internalizing externalities of electricity generation: An analysis with MESSAGE-MACRO," Energy Policy, Elsevier, vol. 35(2), pages 815-827, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Ming & Ma, Teng & Fang, Chen & Liu, Xiaorui & Guo, Chaoyi & Zhang, Silu & Zhou, Ziqiao & Zhu, Yanlei & Dai, Hancheng & Huang, Chen, 2023. "Negative emission technology is key to decarbonizing China's cement industry," Applied Energy, Elsevier, vol. 329(C).
    2. Cary, Michael & Stephens, Heather M., 2024. "Economic, environmental, and technical gains from the Kyoto Protocol: Evidence from cement manufacturing," Resources Policy, Elsevier, vol. 91(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xi & Teng, Fei & Wang, Gehua, 2013. "Incorporating environmental co-benefits into climate policies: A regional study of the cement industry in China," Applied Energy, Elsevier, vol. 112(C), pages 1446-1453.
    2. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    3. Wang, Lining & Patel, Pralit L. & Yu, Sha & Liu, Bo & McLeod, Jeff & Clarke, Leon E. & Chen, Wenying, 2016. "Win–Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China," Applied Energy, Elsevier, vol. 163(C), pages 244-253.
    4. Chae, Yeora & Park, Jeongim, 2011. "Quantifying costs and benefits of integrated environmental strategies of air quality management and greenhouse gas reduction in the Seoul Metropolitan Area," Energy Policy, Elsevier, vol. 39(9), pages 5296-5308, September.
    5. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
    6. Ansari, Nastaran & Seifi, Abbas, 2013. "A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios," Energy Policy, Elsevier, vol. 58(C), pages 75-89.
    7. J. West & Arlene Fiore & Larry Horowitz, 2012. "Scenarios of methane emission reductions to 2030: abatement costs and co-benefits to ozone air quality and human mortality," Climatic Change, Springer, vol. 114(3), pages 441-461, October.
    8. Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
    9. Nayeah Kim & Yun Seop Hwang & Mun Ho Hwang, 2019. "New projection of GHG reduction potentials for Korea’s cement industry and comparison with Roadmap 2030," Energy & Environment, , vol. 30(3), pages 499-521, May.
    10. Bollen, Johannes, 2015. "The value of air pollution co-benefits of climate policies: Analysis with a global sector-trade CGE model called WorldScan," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 178-191.
    11. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    12. Krook Riekkola, Anna & Ahlgren, Erik O. & Söderholm, Patrik, 2011. "Ancillary benefits of climate policy in a small open economy: The case of Sweden," Energy Policy, Elsevier, vol. 39(9), pages 4985-4998, September.
    13. Zvingilaite, Erika & Klinge Jacobsen, Henrik, 2015. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs," Energy Policy, Elsevier, vol. 77(C), pages 31-45.
    14. Soimakallio, Sampo & Kiviluoma, Juha & Saikku, Laura, 2011. "The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment) – A methodological review," Energy, Elsevier, vol. 36(12), pages 6705-6713.
    15. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
    16. Hasanbeigi, Ali & Morrow, William & Sathaye, Jayant & Masanet, Eric & Xu, Tengfang, 2013. "A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry," Energy, Elsevier, vol. 50(C), pages 315-325.
    17. Masako Ikefuji & Jan Magnus & Hiroaki Sakamoto, 2014. "The effect of health benefits on climate change mitigation policies," Climatic Change, Springer, vol. 126(1), pages 229-243, September.
    18. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
    19. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.
    20. Hélène Ollivier, 2016. "North–South Trade and Heterogeneous Damages from Local and Global Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(2), pages 337-355, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03501949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.