IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03138536.html
   My bibliography  Save this paper

Approachability with constraints

Author

Listed:
  • Gaëtan Fournier

    (AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

  • Eden Kuperwasser

    (TAU - Tel Aviv University)

  • Orin Munk

    (TAU - Tel Aviv University)

  • Eilon Solan

    (TAU - Tel Aviv University)

  • Avishay Weinbaum

    (TAU - Tel Aviv University)

Abstract

We study approachability theory in the presence of constraints. Given a repeated game with vector payoffs, we study the pairs of sets (A, D) in the payoff space such that Player 1 can guarantee that the long-run average payoff converges to the set A, while the average payoff always remains in D. We provide a full characterization of these pairs when D is convex and open, and a sufficient condition when D is not convex.

Suggested Citation

  • Gaëtan Fournier & Eden Kuperwasser & Orin Munk & Eilon Solan & Avishay Weinbaum, 2021. "Approachability with constraints," Post-Print hal-03138536, HAL.
  • Handle: RePEc:hal:journl:hal-03138536
    DOI: 10.1016/j.ejor.2020.11.013
    Note: View the original document on HAL open archive server: https://amu.hal.science/hal-03138536
    as

    Download full text from publisher

    File URL: https://amu.hal.science/hal-03138536/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.ejor.2020.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Milman, Emanuel, 2006. "Approachable sets of vector payoffs in stochastic games," Games and Economic Behavior, Elsevier, vol. 56(1), pages 135-147, July.
    2. Xavier Spinat, 2002. "A Necessary and Sufficient Condition for Approachability," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 31-44, February.
    3. Ehud Lehrer & Eilon Solan, 2016. "A General Internal Regret-Free Strategy," Dynamic Games and Applications, Springer, vol. 6(1), pages 112-138, March.
    4. Ehud Lehrer, 2004. "The Game of Normal Numbers," Mathematics of Operations Research, INFORMS, vol. 29(2), pages 259-265, May.
    5. N. Vieille, 1992. "Weak Approachability," Mathematics of Operations Research, INFORMS, vol. 17(4), pages 781-791, November.
    6. Flesch, János & Laraki, Rida & Perchet, Vianney, 2018. "Approachability of convex sets in generalized quitting games," Games and Economic Behavior, Elsevier, vol. 108(C), pages 411-431.
    7. Dario Bauso & Ehud Lehrer & Eilon Solan & Xavier Venel, 2015. "Attainability in Repeated Games with Vector Payoffs," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 739-755, March.
    8. Du, Ye & Lehrer, Ehud, 2020. "Constrained no-regret learning," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 16-24.
    9. Nicolas Vieille, 1992. "Weak Approachability," Post-Print hal-00481891, HAL.
    10. Lehrer, Ehud & Solan, Eilon, 2009. "Approachability with bounded memory," Games and Economic Behavior, Elsevier, vol. 66(2), pages 995-1004, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rad Niazadeh & Negin Golrezaei & Joshua Wang & Fransisca Susan & Ashwinkumar Badanidiyuru, 2023. "Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization," Management Science, INFORMS, vol. 69(7), pages 3797-3817, July.
    2. Dario Bauso & Hamidou Tembine & Tamer Başar, 2016. "Robust Mean Field Games," Dynamic Games and Applications, Springer, vol. 6(3), pages 277-303, September.
    3. Andrey Bernstein & Shie Mannor & Nahum Shimkin, 2014. "Opportunistic Approachability and Generalized No-Regret Problems," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1057-1083, November.
    4. Carmona, G. & Sabourian, H., 2021. "Approachability with Discounting," Cambridge Working Papers in Economics 2124, Faculty of Economics, University of Cambridge.
    5. Flesch, János & Laraki, Rida & Perchet, Vianney, 2018. "Approachability of convex sets in generalized quitting games," Games and Economic Behavior, Elsevier, vol. 108(C), pages 411-431.
    6. Ehud Lehrer & Eilon Solan, 2006. "Excludability and Bounded Computational Capacity," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 637-648, August.
    7. Joseph M. Abdou & Nikolaos Pnevmatikos, 2019. "Asymptotic Value in Frequency-Dependent Games with Separable Payoffs: A Differential Approach," Dynamic Games and Applications, Springer, vol. 9(2), pages 295-313, June.
    8. Pierre Cardaliaguet & Catherine Rainer & Dinah Rosenberg & Nicolas Vieille, 2016. "Markov Games with Frequent Actions and Incomplete Information—The Limit Case," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 49-71, February.
    9. Laraki, Rida & Sorin, Sylvain, 2015. "Advances in Zero-Sum Dynamic Games," Handbook of Game Theory with Economic Applications,, Elsevier.
    10. Vianney Perchet, 2011. "Approachability of Convex Sets in Games with Partial Monitoring," Journal of Optimization Theory and Applications, Springer, vol. 149(3), pages 665-677, June.
    11. Eilon Solan, 2005. "Subgame-Perfection in Quitting Games with Perfect Information and Differential Equations," Mathematics of Operations Research, INFORMS, vol. 30(1), pages 51-72, February.
    12. Rida Laraki, 2002. "Repeated Games with Lack of Information on One Side: The Dual Differential Approach," Mathematics of Operations Research, INFORMS, vol. 27(2), pages 419-440, May.
    13. Lagziel, David & Lehrer, Ehud, 2015. "Approachability with delayed information," Journal of Economic Theory, Elsevier, vol. 157(C), pages 425-444.
    14. Sylvain Sorin, 2018. "Limit Value of Dynamic Zero-Sum Games with Vanishing Stage Duration," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 51-63, February.
    15. Karl Schlag & Andriy Zapechelnyuk, 2009. "Decision Making in Uncertain and Changing Environments," Discussion Papers 19, Kyiv School of Economics.
    16. Sylvain Sorin, 2011. "Zero-Sum Repeated Games: Recent Advances and New Links with Differential Games," Dynamic Games and Applications, Springer, vol. 1(1), pages 172-207, March.
    17. Schlag, Karl H. & Zapechelnyuk, Andriy, 2017. "Dynamic benchmark targeting," Journal of Economic Theory, Elsevier, vol. 169(C), pages 145-169.
    18. Rene Saran & Roberto Serrano, 2012. "Regret Matching with Finite Memory," Dynamic Games and Applications, Springer, vol. 2(1), pages 160-175, March.
    19. Andriy Zapechelnyuk, 2009. "Limit Behavior of No-regret Dynamics," Discussion Papers 21, Kyiv School of Economics.
    20. Bavly, Gilad & Peretz, Ron, 2019. "Limits of correlation in repeated games with bounded memory," Games and Economic Behavior, Elsevier, vol. 115(C), pages 131-145.

    More about this item

    Keywords

    game theory; approachability; optimization;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03138536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.