IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02909207.html
   My bibliography  Save this paper

Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach

Author

Listed:
  • Rongju Zhang

    (Monash University [Melbourne])

  • Nicolas Langrené

    (CSIRO - Commonwealth Scientific and Industrial Research Organisation [Canberra])

  • Yu Tian

    (Monash University [Melbourne])

  • Zili Zhu

    (CSIRO - Commonwealth Scientific and Industrial Research Organisation [Canberra])

  • Fima Klebaner

    (Monash University [Melbourne])

  • Kais Hamza

    (Monash University [Melbourne])

Abstract

We present a simulation-and-regression method for solving dynamic portfolio allocation problems in the presence of general transaction costs, liquidity costs and market impacts. This method extends the classical least squares Monte Carlo algorithm to incorporate switching costs, corresponding to transaction costs and transient liquidity costs, as well as multiple endogenous state variables, namely the portfolio value and the asset prices subject to permanent market impacts. To do so, we improve the accuracy of the control randomization approach in the case of discrete controls, and propose a global iteration procedure to further improve the allocation estimates. We validate our numerical method by solving a realistic cash-and-stock portfolio with a power-law liquidity model. We quantify the certainty equivalent losses associated with ignoring liquidity effects, and illustrate how our dynamic allocation protects the investor's capital under illiquid market conditions. Lastly, we analyze, under different liquidity conditions, the sensitivities of certainty equivalent returns and optimal allocations with respect to trading volume, stock price volatility, initial investment amount, risk-aversion level and investment horizon.

Suggested Citation

  • Rongju Zhang & Nicolas Langrené & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2019. "Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach," Post-Print hal-02909207, HAL.
  • Handle: RePEc:hal:journl:hal-02909207
    DOI: 10.1080/14697688.2018.1524155
    Note: View the original document on HAL open archive server: https://hal.science/hal-02909207
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02909207/document
    Download Restriction: no

    File URL: https://libkey.io/10.1080/14697688.2018.1524155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jules Binsbergen & Michael Brandt, 2007. "Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function?," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 355-367, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rongju Zhang & Nicolas Langrené & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2019. "Skewed target range strategy for multiperiod portfolio optimization using a two-stage least squares Monte Carlo method," Post-Print hal-02909342, HAL.
    2. repec:tin:wpaper:20230016 is not listed on IDEAS
    3. Ivan Guo & Nicolas Langrené & Gregoire Loeper & Wei Ning, 2020. "Robust utility maximization under model uncertainty via a penalization approach," Working Papers hal-02910261, HAL.
    4. Chen, Shun & Ge, Lei, 2021. "A learning-based strategy for portfolio selection," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 936-942.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2018. "Local Control Regression: Improving the Least Squares Monte Carlo Method for Portfolio Optimization," Papers 1803.11467, arXiv.org, revised Sep 2018.
    2. Arkadiy V. Sakhartov, 2017. "Economies of Scope, Resource Relatedness, and the Dynamics of Corporate Diversification," Strategic Management Journal, Wiley Blackwell, vol. 38(11), pages 2168-2188, November.
    3. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    4. Legendre, François & Togola, Djibril, 2016. "Explicit solutions to dynamic portfolio choice problems: A continuous-time detour," Economic Modelling, Elsevier, vol. 58(C), pages 627-641.
    5. T. R. B. den Haan & K. W. Chau & M. van der Schans & C. W. Oosterlee, 2020. "Rule-based Strategies for Dynamic Life Cycle Investment," Papers 2011.02596, arXiv.org.
    6. Changhui Choi & Bong-Gyu Jang & Changki Kim & Sang-youn Roh, 2016. "Net Contribution, Liquidity, and Optimal Pension Management," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(4), pages 913-948, December.
    7. Yichen Zhu & Marcos Escobar-Anel & Matt Davison, 2023. "A Polynomial-Affine Approximation for Dynamic Portfolio Choice," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1177-1213, October.
    8. Björn Bick & Holger Kraft & Claus Munk, 2013. "Solving Constrained Consumption-Investment Problems by Simulation of Artificial Market Strategies," Management Science, INFORMS, vol. 59(2), pages 485-503, June.
    9. Rongju Zhang & Nicolas Langrené & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2019. "Skewed target range strategy for multiperiod portfolio optimization using a two-stage least squares Monte Carlo method," Post-Print hal-02909342, HAL.
    10. Stanislav Anatolyev & Vladimir Pyrlik, 2021. "Shrinkage for Gaussian and t Copulas in Ultra-High Dimensions," CERGE-EI Working Papers wp699, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    11. Bart Diris & Franz Palm & Peter Schotman, 2015. "Long-Term Strategic Asset Allocation: An Out-of-Sample Evaluation," Management Science, INFORMS, vol. 61(9), pages 2185-2202, September.
    12. Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2015. "A closed-form solution of the multi-period portfolio choice problem for a quadratic utility function," Annals of Operations Research, Springer, vol. 229(1), pages 121-158, June.
    13. Xavier Warin, 2016. "The Asset Liability Management problem of a nuclear operator : a numerical stochastic optimization approach," Papers 1611.04877, arXiv.org.
    14. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2016. "Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach," Papers 1610.07694, arXiv.org, revised Jun 2019.
    15. Mark Broadie & Weiwei Shen, 2017. "Numerical solutions to dynamic portfolio problems with upper bounds," Computational Management Science, Springer, vol. 14(2), pages 215-227, April.
    16. Fei Cong & Cornelis W. Oosterlee, 2017. "Accurate and Robust Numerical Methods for the Dynamic Portfolio Management Problem," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 433-458, March.
    17. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2017. "Skewed target range strategy for multiperiod portfolio optimization using a two-stage least squares Monte Carlo method," Papers 1704.00416, arXiv.org, revised Jun 2019.
    18. Farid Mkaouar & Jean-Luc Prigent & Ilyes Abid, 2019. "A Diffusion Model for Long-Term Optimization in the Presence of Stochastic Interest and Inflation Rates," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 367-417, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02909207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.