IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02909113.html
   My bibliography  Save this paper

Switching to nonaffine stochastic volatility: a closed-form expansion for the Inverse Gamma model

Author

Listed:
  • Nicolas Langrené

    (CSIRO - Commonwealth Scientific and Industrial Research Organisation [Canberra])

  • Geoffrey Lee
  • Zili Zhu

Abstract

This paper introduces the Inverse Gamma (IGa) stochastic volatility model with time-dependent parameters, defined by the volatility dynamics dVt = κt (θt − Vt) dt + λtVtdBt. This non-affine model is much more realistic than classical affine models like the Heston stochastic volatility model, even though both are as parsimonious (only four stochastic parameters). Indeed, it provides more realistic volatility distribution and volatility paths, which translate in practice into more robust calibration and better hedging accuracy, explaining its popularity among practitioners. In order to price vanilla options with IGa volatility, we propose a closed-form volatility-of-volatility expansion. Specifically, the price of a European put option with IGa volatility is approximated by a Black-Scholes price plus a weighted combination of Black-Scholes greeks, where the weights depend only on the four time-dependent parameters of the model. This closed-form pricing method allows for very fast pricing and calibration to market data. The overall quality of the approximation is very good, as shown by several calibration tests on real-world market data where expansion prices are compared favorably with Monte Carlo simulation results. This paper shows that the IGa model is as simple, more realistic, easier to implement and faster to calibrate than classical transform-based affine models. We therefore hope that the present work will foster further research on non-affine models like the Inverse Gamma stochastic volatility model, all the more so as this robust model is of great interest to the industry.

Suggested Citation

  • Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching to nonaffine stochastic volatility: a closed-form expansion for the Inverse Gamma model," Post-Print hal-02909113, HAL.
  • Handle: RePEc:hal:journl:hal-02909113
    DOI: 10.1142/S021902491650031X
    Note: View the original document on HAL open archive server: https://hal.science/hal-02909113
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02909113/document
    Download Restriction: no

    File URL: https://libkey.io/10.1142/S021902491650031X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ma, Tao & Serota, R.A., 2014. "A model for stock returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 89-115.
    2. Andrey Itkin, 2013. "New solvable stochastic volatility models for pricing volatility derivatives," Review of Derivatives Research, Springer, vol. 16(2), pages 111-134, July.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Fornari, Fabio & Mele, Antonio, 2001. "Recovering the probability density function of asset prices using garch as diffusion approximations," Journal of Empirical Finance, Elsevier, vol. 8(1), pages 83-110, March.
    5. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    6. Fornari, Fabio & Mele, Antonio, 2006. "Approximating volatility diffusions with CEV-ARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 30(6), pages 931-966, June.
    7. Tao Ma & R. A. Serota, 2013. "A Model for Stock Returns and Volatility," Papers 1305.4173, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Carr & Sander Willems, 2019. "A lognormal type stochastic volatility model with quadratic drift," Papers 1908.07417, arXiv.org.
    2. Kaustav Das & Nicolas Langren'e, 2020. "Explicit approximations of option prices via Malliavin calculus in a general stochastic volatility framework," Papers 2006.01542, arXiv.org, revised Jan 2024.
    3. Qinwen Zhu & Grégoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian Approximation of the Rough Bergomi Model for Monte Carlo Option Pricing," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    4. Dongdong Hu & Hasanjan Sayit & Frederi Viens, 2023. "Pricing basket options with the first three moments of the basket: log-normal models and beyond," Papers 2302.08041, arXiv.org, revised Feb 2023.
    5. Armstrong, Margaret & Langrené, Nicolas & Petter, Renato & Chen, Wen & Petter, Carlos, 2019. "Accounting for tailings dam failures in the valuation of mining projects," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    6. Kaustav Das & Nicolas Langren'e, 2018. "Closed-form approximations with respect to the mixing solution for option pricing under stochastic volatility," Papers 1812.07803, arXiv.org, revised Oct 2021.
    7. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
    8. Yuri F. Saporito & Xu Yang & Jorge P. Zubelli, 2017. "The Calibration of Stochastic-Local Volatility Models - An Inverse Problem Perspective," Papers 1711.03023, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    2. Nicolas Langren'e & Geoffrey Lee & Zili Zhu, 2015. "Switching to non-affine stochastic volatility: A closed-form expansion for the Inverse Gamma model," Papers 1507.02847, arXiv.org, revised Mar 2016.
    3. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    4. Wendong Zheng & Pingping Zeng, 2015. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Papers 1504.08136, arXiv.org.
    5. Wendong Zheng & Pingping Zeng, 2016. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 344-373, September.
    6. Martino Grasselli, 2017. "The 4/2 Stochastic Volatility Model: A Unified Approach For The Heston And The 3/2 Model," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1013-1034, October.
    7. Chi Hung Yuen & Wendong Zheng & Yue Kuen Kwok, 2015. "Pricing Exotic Discrete Variance Swaps under the 3/2-Stochastic Volatility Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(5), pages 421-449, November.
    8. Fornari, Fabio, 2010. "Assessing the compensation for volatility risk implicit in interest rate derivatives," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 722-743, September.
    9. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    10. Bertram During & Christian Hendricks & James Miles, 2016. "Sparse grid high-order ADI scheme for option pricing in stochastic volatility models," Papers 1611.01379, arXiv.org.
    11. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    12. Fazlollah Soleymani & Andrey Itkin, 2019. "Pricing foreign exchange options under stochastic volatility and interest rates using an RBF--FD method," Papers 1903.00937, arXiv.org.
    13. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    14. Kim, Seong-Tae & Kim, Jeong-Hoon, 2020. "Stochastic elasticity of vol-of-vol and pricing of variance swaps," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 420-440.
    15. Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.
    16. Falko Baustian & Katev{r}ina Filipov'a & Jan Posp'iv{s}il, 2019. "Solution of option pricing equations using orthogonal polynomial expansion," Papers 1912.06533, arXiv.org, revised Jun 2020.
    17. Minqiang Li, 2015. "Derivatives Pricing on Integrated Diffusion Processes: A General Perturbation Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(6), pages 582-595, June.
    18. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    19. Josef Danv{e}k & J. Posp'iv{s}il, 2020. "Numerical aspects of integration in semi-closed option pricing formulas for stochastic volatility jump diffusion models," Papers 2006.13181, arXiv.org.
    20. Emmanuel Coffie, 2022. "Numerical Method for Highly Non-linear Mean-reverting Asset Price Model with CEV-type Process," Papers 2205.00634, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02909113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.