IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02265210.html
   My bibliography  Save this paper

Rough affine models

Author

Listed:
  • Martin Keller-Ressel

    (TU Dresden - Technische Universität Dresden = Dresden University of Technology)

  • Martin Larsson

    (D-MATH - Department of Mathematics [ETH Zurich] - ETH Zürich - Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich])

  • Sergio Pulido

    (ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise, LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

The goal of this survey article is to explain and elucidate the affine structure of recent models appearing in the rough volatility literature, and show how it leads to exponential-affine transform formulas.

Suggested Citation

  • Martin Keller-Ressel & Martin Larsson & Sergio Pulido, 2023. "Rough affine models," Post-Print hal-02265210, HAL.
  • Handle: RePEc:hal:journl:hal-02265210
    DOI: 10.1137/1.9781611977783
    Note: View the original document on HAL open archive server: https://hal.science/hal-02265210
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02265210/document
    Download Restriction: no

    File URL: https://libkey.io/10.1137/1.9781611977783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Omar El Euch & Mathieu Rosenbaum, 2016. "The characteristic function of rough Heston models," Papers 1609.02108, arXiv.org.
    2. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    3. F. Comte & L. Coutin & E. Renault, 2012. "Affine fractional stochastic volatility models," Annals of Finance, Springer, vol. 8(2), pages 337-378, May.
    4. Masaaki Fukasawa, 2017. "Short-time at-the-money skew and rough fractional volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 189-198, February.
    5. Jim Gatheral & Martin Keller-Ressel, 2018. "Affine forward variance models," Papers 1801.06416, arXiv.org, revised Oct 2018.
    6. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Keller-Ressel & Martin Larsson & Sergio Pulido, 2018. "Affine Rough Models," Papers 1812.08486, arXiv.org.
    2. repec:hal:wpaper:hal-02265210 is not listed on IDEAS
    3. Eduardo Abi Jaber, 2019. "Lifting the Heston model," Post-Print hal-01890751, HAL.
    4. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
    5. Etienne Chevalier & Sergio Pulido & Elizabeth Z'u~niga, 2021. "American options in the Volterra Heston model," Papers 2103.11734, arXiv.org, revised May 2022.
    6. Qi Zhao & Alexandra Chronopoulou, 2023. "Delta-hedging in fractional volatility models," Annals of Finance, Springer, vol. 19(1), pages 119-140, March.
    7. Eduardo Abi Jaber, 2018. "Lifting the Heston model," Papers 1810.04868, arXiv.org, revised Nov 2019.
    8. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
    9. Eduardo Abi Jaber, 2018. "Lifting the Heston model," Working Papers hal-01890751, HAL.
    10. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    11. Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.
    12. Huy N. Chau & Duy Nguyen & Thai Nguyen, 2024. "On short-time behavior of implied volatility in a market model with indexes," Papers 2402.16509, arXiv.org, revised Apr 2024.
    13. Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
    14. Giulia Livieri & Saad Mouti & Andrea Pallavicini & Mathieu Rosenbaum, 2018. "Rough volatility: Evidence from option prices," IISE Transactions, Taylor & Francis Journals, vol. 50(9), pages 767-776, September.
    15. Viktor Bezborodov & Luca Persio & Yuliya Mishura, 2019. "Option Pricing with Fractional Stochastic Volatility and Discontinuous Payoff Function of Polynomial Growth," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 331-366, March.
    16. Blanka Horvath & Antoine Jacquier & Peter Tankov, 2018. "Volatility options in rough volatility models," Papers 1802.01641, arXiv.org, revised Jan 2019.
    17. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2018. "Precise asymptotics: robust stochastic volatility models," Papers 1811.00267, arXiv.org, revised Nov 2020.
    18. Giulia Di Nunno & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2022. "Option pricing in Sandwiched Volterra Volatility model," Papers 2209.10688, arXiv.org, revised Jul 2024.
    19. Omar El Euch & Mathieu Rosenbaum, 2017. "Perfect hedging in rough Heston models," Papers 1703.05049, arXiv.org.
    20. Christian Bayer & Peter K. Friz & Paul Gassiat & Joerg Martin & Benjamin Stemper, 2017. "A regularity structure for rough volatility," Papers 1710.07481, arXiv.org.
    21. Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02265210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.