IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02131746.html
   My bibliography  Save this paper

Gini Regressions and Heteroskedasticity

Author

Listed:
  • Arthur Charpentier

    (CREM - Centre de recherche en économie et management - UNICAEN - Université de Caen Normandie - NU - Normandie Université - UR - Université de Rennes - CNRS - Centre National de la Recherche Scientifique)

  • Ndéné Ka

    (UADB - Université Alioune Diop de Bambey)

  • Stéphane Mussard

    (CHROME - Détection, évaluation, gestion des risques CHROniques et éMErgents (CHROME) / Université de Nîmes - UNIMES - Université de Nîmes)

  • Oumar Hamady Ndiaye

    (CHROME - Détection, évaluation, gestion des risques CHROniques et éMErgents (CHROME) / Université de Nîmes - UNIMES - Université de Nîmes)

Abstract

We propose an Aitken estimator for Gini regression. The suggested A-Gini estimator is proven to be a U-statistics. Monte Carlo simulations are provided to deal with heteroskedasticity and to make some comparisons between the generalized least squares and the Gini regression. A Gini-White test is proposed and shows that a better power is obtained compared with the usual White test when outlying observations contaminate the data.

Suggested Citation

  • Arthur Charpentier & Ndéné Ka & Stéphane Mussard & Oumar Hamady Ndiaye, 2019. "Gini Regressions and Heteroskedasticity," Post-Print hal-02131746, HAL.
  • Handle: RePEc:hal:journl:hal-02131746
    DOI: 10.3390/econometrics7010004
    Note: View the original document on HAL open archive server: https://hal.science/hal-02131746
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02131746/document
    Download Restriction: no

    File URL: https://libkey.io/10.3390/econometrics7010004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Shlomo Yitzhaki & Edna Schechtman, 2004. "The Gini Instrumental Variable, or the “double instrumental variable” estimator," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 287-313.
    2. Ndene Ka & Stephane Mussard, 2015. "l1 Regressions: Gini Estimators for Fixed Effects Panel Data," Cahiers de recherche 15-02, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    3. Ndéné Ka & Stéphane Mussard, 2016. "ℓ 1 regressions: Gini estimators for fixed effects panel data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(8), pages 1436-1446, June.
    4. Marcel Carcea & Robert Serfling, 2015. "A Gini Autocovariance Function for Time Series Modelling," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 817-838, November.
    5. Mussard, Stéphane & Ndiaye, Oumar Hamady, 2018. "Vector autoregressive models: A Gini approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1967-1979.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anastasia Dimiski, 2020. "Factors that affect Students’ performance in Science: An application using Gini-BMA methodology in PISA 2015 dataset," Working Papers 2004, University of Guelph, Department of Economics and Finance.
    2. Vasile Preda & Luigi-Ionut Catana, 2021. "Tsallis Log-Scale-Location Models. Moments, Gini Index and Some Stochastic Orders," Mathematics, MDPI, vol. 9(11), pages 1-22, May.
    3. Ndéné Ka, 2021. "Proo-poor growth modeling in developing countries: A Gini regression approach," Economics Bulletin, AccessEcon, vol. 41(2), pages 316-327.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles Condevaux & Stéphane Mussard & Téa Ouraga & Guillaume Zambrano, 2020. "Generalized Gini linear and quadratic discriminant analyses," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 219-236, August.
    2. Anastasia Dimiski, 2020. "Factors that affect Students’ performance in Science: An application using Gini-BMA methodology in PISA 2015 dataset," Working Papers 2004, University of Guelph, Department of Economics and Finance.
    3. Yitzhaki, Shlomo & Schechtman, Edna, 2012. "Identifying monotonic and non-monotonic relationships," Economics Letters, Elsevier, vol. 116(1), pages 23-25.
    4. Ndéné Ka & Stéphane Mussard, 2016. "ℓ 1 regressions: Gini estimators for fixed effects panel data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(8), pages 1436-1446, June.
    5. Sudheesh K. Kattumannil & N. Sreelakshmi & N. Balakrishnan, 2022. "Non-Parametric Inference for Gini Covariance and its Variants," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 790-807, August.
    6. Charpentier, Arthur & Mussard, Stéphane & Ouraga, Téa, 2021. "Principal component analysis: A generalized Gini approach," European Journal of Operational Research, Elsevier, vol. 294(1), pages 236-249.
    7. M. Grazia Pittau & Shlomo Yitzhaki & Roberto Zelli, 2011. "The make-up of a regression coefficient: An application to gender," DSS Empirical Economics and Econometrics Working Papers Series 2011/3, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.
    8. M. Grazia Pittau & Shlomo Yitzhaki & Roberto Zelli, 2015. "The “Make-up” of a Regression Coefficient: Gender Gaps in the European Labor Market," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 61(3), pages 401-421, September.
    9. Rui Yang & Xin An & Yingwen Chen & Xiuli Yang, 2023. "The Knowledge Analysis of Panel Vector Autoregression: A Systematic Review," SAGE Open, , vol. 13(4), pages 21582440231, December.
    10. N. V. Gribkova & J. Su & R. Zitikis, 2022. "Empirical tail conditional allocation and its consistency under minimal assumptions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 713-735, August.
    11. Strawczynski Michel, 2014. "Cyclicality Of Statutory Tax Rates," Israel Economic Review, Bank of Israel, vol. 11(1), pages 67-96.
    12. Shlomo Yitzhaki, 2015. "Gini’s mean difference offers a response to Leamer’s critique," METRON, Springer;Sapienza Università di Roma, vol. 73(1), pages 31-43, April.
    13. Xin Dang & Hailin Sang & Lauren Weatherall, 2019. "Gini covariance matrix and its affine equivariant version," Statistical Papers, Springer, vol. 60(3), pages 641-666, June.
    14. Amit Shelef & Edna Schechtman, 2019. "A Gini-based time series analysis and test for reversibility," Statistical Papers, Springer, vol. 60(3), pages 687-716, June.
    15. Gribkova, N.V. & Su, J. & Zitikis, R., 2022. "Inference for the tail conditional allocation: Large sample properties, insurance risk assessment, and compound sums of concomitants," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 199-222.

    More about this item

    Keywords

    U-statistics; jackknife; heteroskedasticity; Gini;
    All these keywords.

    JEL classification:

    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • C - Mathematical and Quantitative Methods
    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02131746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.