IDEAS home Printed from https://ideas.repec.org/a/spr/metron/v73y2015i1p31-43.html
   My bibliography  Save this article

Gini’s mean difference offers a response to Leamer’s critique

Author

Listed:
  • Shlomo Yitzhaki

Abstract

Gini’s mean difference has decomposition properties that nest the decomposition of the variance as a special case. By using it is possible to reveal some of the implicit assumptions imposed on the data by using the variance. I argue that some of those implicit assumptions can be traced to be the causes of Leamer’s critique concerning the ability to manipulate the results of regressions. By requiring the econometrician to report whether those assumptions are violated by the data, we may be able to offer a response to Leamer’s critique. This will reduce the possibility of supplying “empirical proofs” which in turn may increase the trust in econometric research. Copyright Sapienza Università di Roma 2015

Suggested Citation

  • Shlomo Yitzhaki, 2015. "Gini’s mean difference offers a response to Leamer’s critique," METRON, Springer;Sapienza Università di Roma, vol. 73(1), pages 31-43, April.
  • Handle: RePEc:spr:metron:v:73:y:2015:i:1:p:31-43
    DOI: 10.1007/s40300-014-0057-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s40300-014-0057-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s40300-014-0057-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Grazia Pittau & Shlomo Yitzhaki & Roberto Zelli, 2015. "The “Make-up” of a Regression Coefficient: Gender Gaps in the European Labor Market," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 61(3), pages 401-421, September.
    2. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    3. Peter J. Lambert & Andre' Decoster, 2005. "The Gini coefficient reveals more," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 373-400.
    4. Shlomo Yitzhaki & Peter Lambert, 2014. "Is higher variance necessarily bad for investment?," Review of Quantitative Finance and Accounting, Springer, vol. 43(4), pages 855-860, November.
    5. Yitzhaki, Shlomo, 1996. "On Using Linear Regressions in Welfare Economics," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 478-486, October.
    6. Shlomo Yitzhaki & Edna Schechtman, 2004. "The Gini Instrumental Variable, or the “double instrumental variable” estimator," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 287-313.
    7. Leamer, Edward E, 1983. "Let's Take the Con Out of Econometrics," American Economic Review, American Economic Association, vol. 73(1), pages 31-43, March.
    8. Yitzhaki, Shlomo, 1982. "Stochastic Dominance, Mean Variance, and Gini's Mean Difference," American Economic Review, American Economic Association, vol. 72(1), pages 178-185, March.
    9. Yitzhaki, Shlomo & Schechtman, Edna, 2012. "Identifying monotonic and non-monotonic relationships," Economics Letters, Elsevier, vol. 116(1), pages 23-25.
    10. John Ioannidis & Chris Doucouliagos, 2013. "What'S To Know About The Credibility Of Empirical Economics?," Journal of Economic Surveys, Wiley Blackwell, vol. 27(5), pages 997-1004, December.
    11. Matti Langel & Yves Tillé, 2013. "Variance estimation of the Gini index: revisiting a result several times published," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(2), pages 521-540, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schröder, Carsten & Yitzhaki, Shlomo, 2017. "Revisiting the evidence for cardinal treatment of ordinal variables," European Economic Review, Elsevier, vol. 92(C), pages 337-358.
    2. Emanuela Raffinetti & Elena Siletti & Achille Vernizzi, 2017. "Analyzing the Effects of Negative and Non-negative Values on Income Inequality: Evidence from the Survey of Household Income and Wealth of the Bank of Italy (2012)," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(1), pages 185-207, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magne Mogstad & Matthew Wiswall, 2009. "How Linear Models Can Mask Non-Linear Causal Relationships. An Application to Family Size and Children's Education," Discussion Papers 586, Statistics Norway, Research Department.
    2. M. Grazia Pittau & Shlomo Yitzhaki & Roberto Zelli, 2011. "The make-up of a regression coefficient: An application to gender," DSS Empirical Economics and Econometrics Working Papers Series 2011/3, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.
    3. Schröder, Carsten & Yitzhaki, Shlomo, 2017. "Revisiting the evidence for cardinal treatment of ordinal variables," European Economic Review, Elsevier, vol. 92(C), pages 337-358.
    4. Christopher J. Ruhm, 2019. "Shackling the Identification Police?," Southern Economic Journal, John Wiley & Sons, vol. 85(4), pages 1016-1026, April.
    5. Yitzhaki, Shlomo & Schechtman, Edna, 2012. "Identifying monotonic and non-monotonic relationships," Economics Letters, Elsevier, vol. 116(1), pages 23-25.
    6. Richard Ashley & Christopher Parmeter, 2015. "Sensitivity analysis for inference in 2SLS/GMM estimation with possibly flawed instruments," Empirical Economics, Springer, vol. 49(4), pages 1153-1171, December.
    7. Burlig, Fiona, 2018. "Improving transparency in observational social science research: A pre-analysis plan approach," Economics Letters, Elsevier, vol. 168(C), pages 56-60.
    8. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    9. Heath, Davidson & Ringgenberg, Matthew C. & Samadi, Mehrdad & Werner, Ingrid M., 2019. "Reusing Natural Experiments," Working Paper Series 2019-21, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    10. Bogliacino, Francesco & Codagnone, Cristiano, 2021. "Microfoundations, behaviour, and evolution: Evidence from experiments," Structural Change and Economic Dynamics, Elsevier, vol. 56(C), pages 372-385.
    11. Joshua D. Angrist & Jörn-Steffen Pischke, 2017. "Undergraduate Econometrics Instruction: Through Our Classes, Darkly," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 125-144, Spring.
    12. Brodeur, Abel & Cook, Nikolai & Heyes, Anthony, 2018. "Methods Matter: P-Hacking and Causal Inference in Economics," IZA Discussion Papers 11796, Institute of Labor Economics (IZA).
    13. Stephan B. Bruns & David I. Stern, 2019. "Lag length selection and p-hacking in Granger causality testing: prevalence and performance of meta-regression models," Empirical Economics, Springer, vol. 56(3), pages 797-830, March.
    14. M. Grazia Pittau & Shlomo Yitzhaki & Roberto Zelli, 2015. "The “Make-up” of a Regression Coefficient: Gender Gaps in the European Labor Market," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 61(3), pages 401-421, September.
    15. Stephan B. Bruns, 2013. "Identifying Genuine Effects in Observational Research by Means of Meta-Regressions," Jena Economics Research Papers 2013-040, Friedrich-Schiller-University Jena.
    16. Edna Schechtman & Shlomo Yitzhaki & Taina Pudalov, 2011. "Gini’s multiple regressions: two approaches and their interaction," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 67-99.
    17. Gassen, Joachim, 2014. "Causal inference in empirical archival financial accounting research," Accounting, Organizations and Society, Elsevier, vol. 39(7), pages 535-544.
    18. Boris Salazar-Trujillo & Daniel Otero Robles, 2019. "La revolución empírica en economía," Apuntes del Cenes, Universidad Pedagógica y Tecnológica de Colombia, vol. 38(68), pages 15-48, July.
    19. Brian Fabo & Martina Jancokova & Elisabeth Kempf & Lubos Pastor, 2020. "Fifty Shades of QE: Conflicts of Interest in Economic Research," Working Papers 2020-128, Becker Friedman Institute for Research In Economics.
    20. Jakub Rybacki, 2020. "Are Central Banks’ Research Teams Fragile Because of Groupthink in the Area of Monetary Policy? – Evidence on Inflation Targeting," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 4, pages 81-103.

    More about this item

    Keywords

    Gini; Variance; Regression;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:73:y:2015:i:1:p:31-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.