IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01784180.html
   My bibliography  Save this paper

ℓ1 regressions: Gini estimators for fixed effects panel data

Author

Listed:
  • Ndéné Ka

    (LAMETA - Laboratoire Montpelliérain d'Économie Théorique et Appliquée - UM1 - Université Montpellier 1 - UPVM - Université Paul-Valéry - Montpellier 3 - INRA - Institut National de la Recherche Agronomique - Montpellier SupAgro - Centre international d'études supérieures en sciences agronomiques - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier)

  • Stéphane Mussard

    (UNIMES - Université de Nîmes)

Abstract

Panel data, frequently employed in empirical investigations, provide estimators being strongly biased in the presence of atypical observations. The aim of this work is to propose a ℓ 1 Gini regression for panel data. It is shown that the fixed effects within-group Gini estimator is more robust than the ordinary least squares one when the data are contaminated by outliers. This semi-parametric Gini estimator is proven to be an U-statistics, consequently, it is asymptotically normal.

Suggested Citation

  • Ndéné Ka & Stéphane Mussard, 2015. "ℓ1 regressions: Gini estimators for fixed effects panel data," Post-Print hal-01784180, HAL.
  • Handle: RePEc:hal:journl:hal-01784180
    DOI: 10.1080/02664763.2015.1103707
    Note: View the original document on HAL open archive server: https://hal.science/hal-01784180
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01784180/document
    Download Restriction: no

    File URL: https://libkey.io/10.1080/02664763.2015.1103707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Shlomo Yitzhaki & Edna Schechtman, 2004. "The Gini Instrumental Variable, or the “double instrumental variable” estimator," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 287-313.
    2. Shlomo Yitzhaki, 2003. "Gini’s Mean difference: a superior measure of variability for non-normal distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 285-316.
    3. Shlomo Yitzhaki & Peter Lambert, 2013. "The relationship between the absolute deviation from a quantile and Gini’s mean difference," METRON, Springer;Sapienza Università di Roma, vol. 71(2), pages 97-104, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arthur Charpentier & Ndéné Ka & Stéphane Mussard & Oumar Hamady Ndiaye, 2019. "Gini Regressions and Heteroskedasticity," Econometrics, MDPI, vol. 7(1), pages 1-16, January.
    2. Charles Condevaux & Stéphane Mussard & Téa Ouraga & Guillaume Zambrano, 2020. "Generalized Gini linear and quadratic discriminant analyses," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 219-236, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Grazia Pittau & Shlomo Yitzhaki & Roberto Zelli, 2011. "The make-up of a regression coefficient: An application to gender," DSS Empirical Economics and Econometrics Working Papers Series 2011/3, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.
    2. M. Grazia Pittau & Shlomo Yitzhaki & Roberto Zelli, 2015. "The “Make-up” of a Regression Coefficient: Gender Gaps in the European Labor Market," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 61(3), pages 401-421, September.
    3. Téa Ouraga, 2019. "A note on Gini Principal Component Analysis," Economics Bulletin, AccessEcon, vol. 39(2), pages 1076-1083.
    4. Shlomo Yitzhaki & Peter Lambert, 2014. "Is higher variance necessarily bad for investment?," Review of Quantitative Finance and Accounting, Springer, vol. 43(4), pages 855-860, November.
    5. Ndene Ka & Stephane Mussard, 2015. "l1 Regressions: Gini Estimators for Fixed Effects Panel Data," Cahiers de recherche 15-02, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    6. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    7. Charles Condevaux & Stéphane Mussard & Téa Ouraga & Guillaume Zambrano, 2020. "Generalized Gini linear and quadratic discriminant analyses," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 219-236, August.
    8. Yitzhaki, Shlomo & Schechtman, Edna, 2012. "Identifying monotonic and non-monotonic relationships," Economics Letters, Elsevier, vol. 116(1), pages 23-25.
    9. Yoel Finkel & Yevgeny Artsev & Shlomo Yitzhaki, 2006. "Inequality measurement and the time structure of household income in Israel," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 4(2), pages 153-179, August.
    10. Arthur Charpentier & Ndéné Ka & Stéphane Mussard & Oumar Hamady Ndiaye, 2019. "Gini Regressions and Heteroskedasticity," Econometrics, MDPI, vol. 7(1), pages 1-16, January.
    11. Majid Asadi & Somayeh Zarezadeh, 2020. "A unified approach to constructing correlation coefficients between random variables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(6), pages 657-676, August.
    12. Charpentier, Arthur & Mussard, Stéphane & Ouraga, Téa, 2021. "Principal component analysis: A generalized Gini approach," European Journal of Operational Research, Elsevier, vol. 294(1), pages 236-249.
    13. Stéphane Mussard & Fattouma Souissi-Benrejab, 2019. "Gini-PLS Regressions," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(3), pages 477-512, September.
    14. N. Nair & P. Sankaran & B. Vineshkumar, 2012. "Characterization of distributions by properties of truncated Gini index and mean difference," METRON, Springer;Sapienza Università di Roma, vol. 70(2), pages 173-191, August.
    15. Gordon Anderson & Oliver Linton & Maria Grazia Pittau & Yoon-Jae Whang & Roberto Zelli, 2021. "On unit free assessment of the extent of multilateral distributional variation," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 502-518.
    16. Fukao, Kyoji & Paul, Saumik, 2018. "A Framework to Study the Role of Structural Transformation in Productivity Growth and Regional Convergence," ADBI Working Papers 833, Asian Development Bank Institute.
    17. Carina Gerstenberger & Daniel Vogel, 2015. "On the efficiency of Gini’s mean difference," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 569-596, November.
    18. Miguel A. Lejeune & John Turner, 2019. "Planning Online Advertising Using Gini Indices," Operations Research, INFORMS, vol. 67(5), pages 1222-1245, September.
    19. Erreygers, Guido, 2009. "Can a single indicator measure both attainment and shortfall inequality?," Journal of Health Economics, Elsevier, vol. 28(4), pages 885-893, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01784180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.