IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01769390.html
   My bibliography  Save this paper

Forecasting sovereign CDS volatility: A comparison of univariate GARCH-class models

Author

Listed:
  • Saker Sabkha

    (LEGO - Laboratoire d'Economie et de Gestion de l'Ouest - UBS - Université de Bretagne Sud - UBO - Université de Brest - IMT - Institut Mines-Télécom [Paris] - IBSHS - Institut Brestois des Sciences de l'Homme et de la Société - UBO - Université de Brest - UBL - Université Bretagne Loire - IMT Atlantique - IMT Atlantique - IMT - Institut Mines-Télécom [Paris])

Abstract

Initially overlooked by investors, the sovereign credit risk has been reassessed upwards since the 2000's which has contributed to awaken the interest of speculators in sovereign CDS. The growing need of accurate forecasting models has led us to fill the gap in the literature by studying the predictability of sovereign CDS volatility, using both linear and non-linear GARCH-class models. This paper uses data from 38 worldwide countries, ranging from January 2006 to March 2017. Results show that the CDS markets are subject to periods of volatility clustering, nonlinearity, asym-metric leverage effects and long-memory behavior. Using 7 heteroskedastic and no heteroskedastic-robust statistic criteria, results show that the fractionally-integrated models outperform the basic GARCH-class models in terms of forecasting ability and that allowing flexibility regarding the persistence degree of variance shocks significantly improves the model's suitability to data. Despite the divergence in the economic status and geographical positions of the countries composing our sample, the FIGARCH and FIEGARCH models are mainly found to be the most accurate models in predicting credit market volatility. JEL Classification: G15, G17, C58.

Suggested Citation

  • Saker Sabkha, 2021. "Forecasting sovereign CDS volatility: A comparison of univariate GARCH-class models," Post-Print hal-01769390, HAL.
  • Handle: RePEc:hal:journl:hal-01769390
    DOI: 10.3917/vse.209.0027
    Note: View the original document on HAL open archive server: https://hal.science/hal-01769390
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01769390/document
    Download Restriction: no

    File URL: https://libkey.io/10.3917/vse.209.0027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    3. Agnolucci, Paolo, 2009. "Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models," Energy Economics, Elsevier, vol. 31(2), pages 316-321, March.
    4. Fontana, Alessandro & Scheicher, Martin, 2016. "An analysis of euro area sovereign CDS and their relation with government bonds," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 126-140.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
    7. Krishnan, C.N.V. & Ritchken, Peter H. & Thomson, James B., 2010. "Predicting credit spreads," Journal of Financial Intermediation, Elsevier, vol. 19(4), pages 529-563, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saker Sabkha & Christian de Peretti & Dorra Hmaied, 2018. "Forecasting sovereign CDS volatility: A comparison of univariate GARCH-class models," Working Papers hal-01769390, HAL.
    2. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    3. Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
    4. Cheong, Chin Wen, 2009. "Modeling and forecasting crude oil markets using ARCH-type models," Energy Policy, Elsevier, vol. 37(6), pages 2346-2355, June.
    5. David McMillan & Raquel Quiroga Garcia, 2009. "Intra-day volatility forecasts," Applied Financial Economics, Taylor & Francis Journals, vol. 19(8), pages 611-623.
    6. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    7. Charfeddine, Lanouar, 2016. "Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis," Economic Modelling, Elsevier, vol. 53(C), pages 354-374.
    8. Chu, Carlin C.F. & Lam, K.P., 2011. "Modeling intraday volatility: A new consideration," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(3), pages 388-418, July.
    9. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2012. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(2), pages 207-218.
    10. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    11. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    12. Dilip Kumar, 2018. "Modeling and Forecasting Unbiased Extreme Value Volatility Estimator in Presence of Leverage Effect," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(2), pages 313-335, June.
    13. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    14. Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
    15. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    16. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2015. "The impact of financial crises on the risk–return tradeoff and the leverage effect," Economic Modelling, Elsevier, vol. 49(C), pages 407-418.
    17. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    18. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    19. Alessandro Cardinali, 2012. "An Out-of-sample Analysis of Mean-Variance Portfolios with Orthogonal GARCH Factors," International Econometric Review (IER), Econometric Research Association, vol. 4(1), pages 1-16, April.
    20. Ender Su & John Bilson, 2011. "Trading asymmetric trend and volatility by leverage trend GARCH in Taiwan stock index," Applied Economics, Taylor & Francis Journals, vol. 43(26), pages 3891-3905.

    More about this item

    Keywords

    CDS volatility; Predictability; Forecasting models; Loss functions criteria 1;
    All these keywords.

    JEL classification:

    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01769390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.