IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01385896.html
   My bibliography  Save this paper

A time series-based approach for renewable energy modeling

Author

Listed:
  • Fatih Onur Hocaoglu
  • Fatih Karanfil

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

Abstract

Despite the growing literature on renewable energy sources, causal relationships between the variables that are selected as inputs of the models proposed in forecasting studies have not been investigated so far. In this paper, a novel approach to decide prediction input variables of wind and/or temperature forecasting models is suggested. This approach uses time series techniques; more specifically, Granger causality and impulse-response analyses between some meteorological variables. To conduct our study, wind speed, temperature and pressure data obtained from different regions of Turkey are employed. The results suggest that bidirectional causal relationships exist between these variables and that short-run dynamics differ with respect to location (inland versus coastal area). From this, it is concluded that renewable energy models must be built accordingly to improve prediction accuracy.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Fatih Onur Hocaoglu & Fatih Karanfil, 2013. "A time series-based approach for renewable energy modeling," Post-Print hal-01385896, HAL.
  • Handle: RePEc:hal:journl:hal-01385896
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mellit, A. & Benghanem, M. & Kalogirou, S.A., 2006. "An adaptive wavelet-network model for forecasting daily total solar-radiation," Applied Energy, Elsevier, vol. 83(7), pages 705-722, July.
    2. Mellit, A. & Kalogirou, S.A. & Hontoria, L. & Shaari, S., 2009. "Artificial intelligence techniques for sizing photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 406-419, February.
    3. Karanfil, Fatih, 2008. "Energy consumption and economic growth revisited: Does the size of unrecorded economy matter?," Energy Policy, Elsevier, vol. 36(8), pages 3019-3025, August.
    4. Karanfil, Fatih, 2009. "How many times again will we examine the energy-income nexus using a limited range of traditional econometric tools?," Energy Policy, Elsevier, vol. 37(4), pages 1191-1194, April.
    5. Kavasseri, Rajesh G. & Seetharaman, Krithika, 2009. "Day-ahead wind speed forecasting using f-ARIMA models," Renewable Energy, Elsevier, vol. 34(5), pages 1388-1393.
    6. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    7. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    8. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    9. Cadenas, Erasmo & Rivera, Wilfrido, 2010. "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model," Renewable Energy, Elsevier, vol. 35(12), pages 2732-2738.
    10. Granger, C. W. J., 1988. "Some recent development in a concept of causality," Journal of Econometrics, Elsevier, vol. 39(1-2), pages 199-211.
    11. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    12. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    13. Mohandes, M.A. & Halawani, T.O. & Rehman, S. & Hussain, Ahmed A., 2004. "Support vector machines for wind speed prediction," Renewable Energy, Elsevier, vol. 29(6), pages 939-947.
    14. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    15. Lutkepohl, Helmut, 1982. "Non-causality due to omitted variables," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 367-378, August.
    16. Soares, Jacyra & Oliveira, Amauri P. & Boznar, Marija Zlata & Mlakar, Primoz & Escobedo, João F. & Machado, Antonio J., 2004. "Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique," Applied Energy, Elsevier, vol. 79(2), pages 201-214, October.
    17. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    18. Haque, Ashraf U. & Mandal, Paras & Kaye, Mary E. & Meng, Julian & Chang, Liuchen & Senjyu, Tomonobu, 2012. "A new strategy for predicting short-term wind speed using soft computing models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4563-4573.
    19. Fadare, D.A., 2009. "Modelling of solar energy potential in Nigeria using an artificial neural network model," Applied Energy, Elsevier, vol. 86(9), pages 1410-1422, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Rangel-Heras & César Angeles-Camacho & Erasmo Cadenas-Calderón & Rafael Campos-Amezcua, 2022. "Short-Term Forecasting of Energy Production for a Photovoltaic System Using a NARX-CVM Hybrid Model," Energies, MDPI, vol. 15(8), pages 1-23, April.
    2. Fatih Karanfil, 2017. "An empirical analysis of European football rivalries based on on-field performances," Sport Management Review, Taylor & Francis Journals, vol. 20(5), pages 468-482, December.
    3. Nurcan Kilinc-Ata, 2018. "Assessing the Future of Renewable Energy Consumption for United Kingdom, Turkey and Nigeria," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 12(4), pages 62-77.
    4. Xiong, Yongkang & Zeng, Zhenfeng & Xin, Jianbo & Song, Guanhong & Xia, Yonghong & Xu, Zaide, 2023. "Renewable energy time series regulation strategy considering grid flexible load and N-1 faults," Energy, Elsevier, vol. 284(C).
    5. Eduardo Rangel & Erasmo Cadenas & Rafael Campos-Amezcua & Jorge L. Tena, 2020. "Enhanced Prediction of Solar Radiation Using NARX Models with Corrected Input Vectors," Energies, MDPI, vol. 13(10), pages 1-22, May.
    6. Fahri Seker & Murat Cetin, 2015. "The relationship between renewable energy consumption and carbon emissions in Turkey: An ARDL bounds testing approach," Proceedings of International Academic Conferences 2604535, International Institute of Social and Economic Sciences.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karanfil, Fatih, 2009. "How many times again will we examine the energy-income nexus using a limited range of traditional econometric tools?," Energy Policy, Elsevier, vol. 37(4), pages 1191-1194, April.
    2. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    3. Hamdi, Helmi & Sbia, Rashid & Shahbaz, Muhammad, 2014. "The nexus between electricity consumption and economic growth in Bahrain," Economic Modelling, Elsevier, vol. 38(C), pages 227-237.
    4. Mehdi Abid, 2016. "Energy Consumption-Informal Economic Growth Analysis: What Policy Options Do We Have?," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 7(1), pages 207-218, March.
    5. Man-Keun Kim & Kangil Lee, 2015. "Dynamic Interactions between Carbon and Energy Prices in the U.S. Regional Greenhouse Gas Initiative," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 494-501.
    6. Wang, Sen & Gao, Yi, 2021. "A literature review and citation analyses of air travel demand studies published between 2010 and 2020," Journal of Air Transport Management, Elsevier, vol. 97(C).
    7. Mounir Ben Mbarek & Samia Nasreen & Rochdi Feki, 2017. "The contribution of nuclear energy to economic growth in France: short and long run," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(1), pages 219-238, January.
    8. Jobert, Thomas & Karanfil, Fatih, 2007. "Sectoral energy consumption by source and economic growth in Turkey," Energy Policy, Elsevier, vol. 35(11), pages 5447-5456, November.
    9. Hanan Naser, 2015. "Can Nuclear Energy Stimulates Economic Growth? Evidence from Highly Industrialised Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 164-173.
    10. Caraiani, Chirața & Lungu, Camelia I. & Dascălu, Cornelia, 2015. "Energy consumption and GDP causality: A three-step analysis for emerging European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 198-210.
    11. Chien-Chiang Lee & Chun-Ping Chang, 2006. "The Long-Run Relationship Between Defence Expenditures And Gdp In Taiwan," Defence and Peace Economics, Taylor & Francis Journals, vol. 17(4), pages 361-385.
    12. Bley, Jorg, 2009. "European stock market integration: Fact or fiction?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(5), pages 759-776, December.
    13. Ahmed, Monir Uddin & Nurul Hossain, A.K.M. & Hasanuzzaman, Syed, 2015. "Exploring the depth of energy penetration in economic advancement: Perspective of Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1033-1047.
    14. Bloch, Harry & Rafiq, Shuddhasattwa & Salim, Ruhul, 2012. "Coal consumption, CO2 emission and economic growth in China: Empirical evidence and policy responses," Energy Economics, Elsevier, vol. 34(2), pages 518-528.
    15. Bley, Jorg & Chen, Kim Heng, 2006. "Gulf Cooperation Council (GCC) stock markets: The dawn of a new era," Global Finance Journal, Elsevier, vol. 17(1), pages 75-91, September.
    16. Martin Gürtler, 2015. "Poptávka po reálných peněžních zůstatcích v ČR a její determinanty [Demand For Real Money Balances in the Czech Republic and its Determinants]," Politická ekonomie, Prague University of Economics and Business, vol. 2015(5), pages 570-602.
    17. Banu Demirhan, 2016. "Financial Development and Investment Amount Nexus: A Case Study of Turkey," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 6(3), pages 127-134, March.
    18. Bashiri Behmiri, Niaz & Pires Manso, José R., 2012. "Does Portuguese economy support crude oil conservation hypothesis?," Energy Policy, Elsevier, vol. 45(C), pages 628-634.
    19. Zhang, Yu & Zhang, Sufang, 2018. "The impacts of GDP, trade structure, exchange rate and FDI inflows on China's carbon emissions," Energy Policy, Elsevier, vol. 120(C), pages 347-353.
    20. Shahbaz, Muhammad & Lean, Hooi Hooi, 2012. "Does financial development increase energy consumption? The role of industrialization and urbanization in Tunisia," Energy Policy, Elsevier, vol. 40(C), pages 473-479.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01385896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.