IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v23y1993i02p227-258_01.html
   My bibliography  Save this article

On the Stability of Recursive Formulas

Author

Listed:
  • H. Panjer, Harry
  • Shaun Wang,

Abstract

Based on recurrence equation theory and relative error (rather than absolute error) analysis, the concept and criterion for the stability of a recurrence equation are clarified. A family of recursions, called congruent recursions, is proved to be strongly stable in evaluating its non-negative solutions. A type of strongly unstable recursion is identified. The recursive formula discussed by Panjer (1981) is proved to be strongly stable in evaluating the compound Poisson and the compound Negative Binomial (including Geometric) distributions. For the compound Binomial distribution, the recursion is shown to be unstable. A simple method to cope with this instability is proposed. Many other recursions are reviewed. Illustrative numerical examples are given.

Suggested Citation

  • H. Panjer, Harry & Shaun Wang,, 1993. "On the Stability of Recursive Formulas," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 227-258, November.
  • Handle: RePEc:cup:astinb:v:23:y:1993:i:02:p:227-258_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100011776/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rulliere, Didier & Loisel, Stephane, 2004. "Another look at the Picard-Lefevre formula for finite-time ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 187-203, October.
    2. Sundt, Bjorn, 2002. "Recursive evaluation of aggregate claims distributions," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 297-322, June.
    3. Mijatović, Aleksandar & Vidmar, Matija & Jacka, Saul, 2015. "Markov chain approximations to scale functions of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3932-3957.
    4. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2008. "Robustness analysis and convergence of empirical finite-time ruin probabilities and estimation risk solvency margin," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 746-762, April.
    5. Michel Denuit, 2009. "Life Anuities with Stochastic Survival Probabilities: A Review," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 463-489, September.
    6. Michel Denuit & Raluca Vernic, 2018. "Bivariate Bernoulli Weighted Sums and Distribution of Single-Period Tontine Benefits," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1403-1416, December.
    7. Ramsay, Colin M., 2003. "A solution to the ruin problem for Pareto distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 109-116, August.
    8. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2009. "Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 374-381, December.
    9. Usabel, Miguel, 1999. "Calculating multivariate ruin probabilities via Gaver-Stehfest inversion technique," Insurance: Mathematics and Economics, Elsevier, vol. 25(2), pages 133-142, November.
    10. Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo & Venegas-Martínez, Francisco, 2015. "Riesgo operativo en el sector salud en Colombia [Operational Risk in the Health Sector in Colombia]," MPRA Paper 63149, University Library of Munich, Germany.
    11. Shaun, Wang, 1995. "On two-sided compound binomial distributions," Insurance: Mathematics and Economics, Elsevier, vol. 17(1), pages 35-41, August.
    12. Gathy, Maude & Lefèvre, Claude, 2010. "On the Lagrangian Katz family of distributions as a claim frequency model," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 76-83, August.
    13. Stefan Gerhold & Uwe Schmock & Richard Warnung, 2010. "A generalization of Panjer’s recursion and numerically stable risk aggregation," Finance and Stochastics, Springer, vol. 14(1), pages 81-128, January.
    14. Venegas-Martínez, Francisco & Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo, 2015. "Riesgo operativo en el sector salud en Colombia: 2013," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(43), pages 7-36, segundo s.
    15. Paul Embrechts & Marco Frei, 2009. "Panjer recursion versus FFT for compound distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 497-508, July.
    16. Pavel V. Shevchenko, 2010. "Calculation of aggregate loss distributions," Papers 1008.1108, arXiv.org.
    17. Ambagaspitiya, R. S., 1995. "A family of discrete distributions," Insurance: Mathematics and Economics, Elsevier, vol. 16(2), pages 107-127, May.
    18. Muneya Matsui, 2017. "Prediction of Components in Random Sums," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 573-587, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:23:y:1993:i:02:p:227-258_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.