IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v19y1989i01p57-70_00.html
   My bibliography  Save this article

Estimators and Bootstrap Confidence Intervals for Ruin Probabilities

Author

Listed:
  • Hipp, Christian

Abstract

For the infinite time ruin probability in the classical risk process, efficient estimators are proposed in cases in which the claim amount distribution is unknown. Confidence intervals are computed which are based on normal approximations or on the bootstrap method. The procedures are checked in a Monte-Carlo study.

Suggested Citation

  • Hipp, Christian, 1989. "Estimators and Bootstrap Confidence Intervals for Ruin Probabilities," ASTIN Bulletin, Cambridge University Press, vol. 19(1), pages 57-70, April.
  • Handle: RePEc:cup:astinb:v:19:y:1989:i:01:p:57-70_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100008357/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2008. "Robustness analysis and convergence of empirical finite-time ruin probabilities and estimation risk solvency margin," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 746-762, April.
    2. Honglong You & Yuan Gao, 2019. "Non-Parametric Threshold Estimation for the Wiener–Poisson Risk Model," Mathematics, MDPI, vol. 7(6), pages 1-11, June.
    3. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2009. "Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 374-381, December.
    4. You, Honglong & Guo, Junyi & Jiang, Jiancheng, 2020. "Interval estimation of the ruin probability in the classical compound Poisson risk model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    5. S. Pitts, 1994. "Nonparametric estimation of compound distributions with applications in insurance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 537-555, September.
    6. Zhang, Zhimin & Yang, Hailiang, 2013. "Nonparametric estimate of the ruin probability in a pure-jump Lévy risk model," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 24-35.
    7. Zhang, Zhimin & Yang, Hailiang, 2014. "Nonparametric estimation for the ruin probability in a Lévy risk model under low-frequency observation," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 168-177.
    8. M. Concepcion Ausin & Michael P. Wiper & Rosa E. Lillo, 2009. "Bayesian estimation of finite time ruin probabilities," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 787-805, November.
    9. Li Qin & Susan M. Pitts, 2012. "Nonparametric Estimation of the Finite-Time Survival Probability with Zero Initial Capital in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 919-936, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:19:y:1989:i:01:p:57-70_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.