IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-01147442.html
   My bibliography  Save this paper

Uniformity and games decomposition

Author

Listed:
  • Joseph M. Abdou

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Nikolaos Pnevmatikos

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Marco Scarsini

    (Engineering and System Design Pillar - SUTD - Singapore University of Technology and Design)

Abstract

We introduce the classes of uniform and non-interactive games. We study appropriate projection operators over the space of finite games in order to propose a novel canonical direct-sum decomposition of an arbitrary game into three components, which we refer to as the uniform with zero-constant, the non-interactive total-sum zero and the constant components. We prove orthogonality between the components with respect to a natural extension of the standard inner product and we further provide explicit expressions for the closet uniform and non-interactive games to a given game. The, we characterize the set of its approximate equilibria in terms of the uniformly mixed and dominant strategies equilibria profiles of its closet uniform and non-interactive games respectively.

Suggested Citation

  • Joseph M. Abdou & Nikolaos Pnevmatikos & Marco Scarsini, 2017. "Uniformity and games decomposition," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01147442, HAL.
  • Handle: RePEc:hal:cesptp:halshs-01147442
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-01147442v2
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-01147442v2/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fabrizio Germano, 2006. "On some geometry and equivalence classes of normal form games," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(4), pages 561-581, November.
    2. Jean-François Mertens, 2004. "Ordinality in non cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(3), pages 387-430, June.
    3. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    4. Monderer, Dov & Shapley, Lloyd S., 1996. "Fictitious Play Property for Games with Identical Interests," Journal of Economic Theory, Elsevier, vol. 68(1), pages 258-265, January.
    5. Morris, Stephen & Ui, Takashi, 2004. "Best response equivalence," Games and Economic Behavior, Elsevier, vol. 49(2), pages 260-287, November.
    6. Ozan Candogan & Ishai Menache & Asuman Ozdaglar & Pablo A. Parrilo, 2011. "Flows and Decompositions of Games: Harmonic and Potential Games," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 474-503, August.
    7. Ɖura-Georg Granić & Johannes Kern, 2016. "Circulant games," Theory and Decision, Springer, vol. 80(1), pages 43-69, January.
    8. Capraro, Valerio & Scarsini, Marco, 2013. "Existence of equilibria in countable games: An algebraic approach," Games and Economic Behavior, Elsevier, vol. 79(C), pages 163-180.
    9. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    10. Norman L. Kleinberg & Jeffrey H. Weiss, 1986. "The Orthogonal Decomposition of Games and an Averaging Formula for the Shapley Value," Mathematics of Operations Research, INFORMS, vol. 11(1), pages 117-124, February.
    11. Sandholm, William H., 2010. "Decompositions and potentials for normal form games," Games and Economic Behavior, Elsevier, vol. 70(2), pages 446-456, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozan Candogan & Ishai Menache & Asuman Ozdaglar & Pablo A. Parrilo, 2011. "Flows and Decompositions of Games: Harmonic and Potential Games," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 474-503, August.
    2. Candogan, Ozan & Ozdaglar, Asuman & Parrilo, Pablo A., 2013. "Dynamics in near-potential games," Games and Economic Behavior, Elsevier, vol. 82(C), pages 66-90.
    3. Morris, Stephen & Ui, Takashi, 2004. "Best response equivalence," Games and Economic Behavior, Elsevier, vol. 49(2), pages 260-287, November.
    4. Hwang, Sung-Ha & Rey-Bellet, Luc, 2020. "Strategic decompositions of normal form games: Zero-sum games and potential games," Games and Economic Behavior, Elsevier, vol. 122(C), pages 370-390.
    5. Hellmann, Tim & Staudigl, Mathias, 2014. "Evolution of social networks," European Journal of Operational Research, Elsevier, vol. 234(3), pages 583-596.
    6. Hofbauer,J. & Sandholm,W.H., 2001. "Evolution and learning in games with randomly disturbed payoffs," Working papers 5, Wisconsin Madison - Social Systems.
    7. Hofbauer,J. & Sandholm,W.H., 2001. "Evolution and learning in games with randomly disturbed payoffs," Working papers 5, Wisconsin Madison - Social Systems.
    8. Jacques Durieu & Hans Haller & Nicolas Querou & Philippe Solal, 2008. "Ordinal Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 177-194.
    9. Kets, W., 2007. "The Minority Game : An Economics Perspective," Other publications TiSEM 65d52a6a-b27d-45a9-93a7-e, Tilburg University, School of Economics and Management.
    10. Nora, Vladyslav & Uno, Hiroshi, 2014. "Saddle functions and robust sets of equilibria," Journal of Economic Theory, Elsevier, vol. 150(C), pages 866-877.
    11. repec:ebl:ecbull:v:3:y:2008:i:17:p:1-7 is not listed on IDEAS
    12. Lina Mallozzi, 2013. "An application of optimization theory to the study of equilibria for games: a survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 523-539, September.
    13. Anthonisen, Niels, 1997. "On the Convergence of Beliefs within Populations in Games with Learning," Journal of Economic Theory, Elsevier, vol. 76(1), pages 169-184, September.
    14. repec:ebl:ecbull:v:3:y:2007:i:19:p:1-8 is not listed on IDEAS
    15. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    16. Fabrizio Germano, 2006. "On some geometry and equivalence classes of normal form games," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(4), pages 561-581, November.
    17. Ruben Juarez & Rajnish Kumar, 2013. "Implementing efficient graphs in connection networks," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(2), pages 359-403, October.
    18. Berger, Ulrich, 2005. "Fictitious play in 2 x n games," Journal of Economic Theory, Elsevier, vol. 120(2), pages 139-154, February.
    19. Duffy, John & Hopkins, Ed, 2005. "Learning, information, and sorting in market entry games: theory and evidence," Games and Economic Behavior, Elsevier, vol. 51(1), pages 31-62, April.
    20. Joseph Abdou & Nikolaos Pnevmatikos & Marco Scarsini & Xavier Venel, 2022. "Decomposition of Games: Some Strategic Considerations," Mathematics of Operations Research, INFORMS, vol. 47(1), pages 176-208, February.
    21. Hopkins, Ed & Posch, Martin, 2005. "Attainability of boundary points under reinforcement learning," Games and Economic Behavior, Elsevier, vol. 53(1), pages 110-125, October.
    22. Kukushkin, Nikolai S., 2014. "Rosenthal's potential and a discrete version of the Debreu--Gorman Theorem," MPRA Paper 54171, University Library of Munich, Germany.

    More about this item

    Keywords

    decomposition of games; projection operator; uniformly mixed strategy;
    All these keywords.

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C79 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-01147442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.