IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/hal-00685404.html
   My bibliography  Save this paper

Partial probabilistic information

Author

Listed:
  • Alain Chateauneuf

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Caroline Ventura

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

Suppose a decision maker (DM) has partial information about certain events of a [sigma]-algebra belonging to a set and assesses their likelihood through a capacity v. When is this information probabilistic, i.e. compatible with a probability? We consider three notions of compatibility with a probability in increasing degree of preciseness. The weakest requires the existence of a probability P on such that P(E)>=v(E) for all , we then say that v is a probability lower bound. A stronger one is to ask that v be a lower probability, that is the infimum of a family of probabilities on . The strongest notion of compatibility is for v to be an extendable probability, i.e. there exists a probability P on which coincides with v on . We give necessary and sufficient conditions on v in each case and, when is finite, we provide effective algorithms that check them in a finite number of steps.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed f
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Alain Chateauneuf & Caroline Ventura, 2011. "Partial probabilistic information," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00685404, HAL.
  • Handle: RePEc:hal:cesptp:hal-00685404
    DOI: 10.1016/j.jmateco.2010.09.007
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nehring, Klaus, 1999. "Capacities and probabilistic beliefs: a precarious coexistence," Mathematical Social Sciences, Elsevier, vol. 38(2), pages 197-213, September.
    2. DELBAEN, Freddy, 1974. "Convex games and extreme points," LIDAM Reprints CORE 159, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Yaron Azrieli & Ehud Lehrer, 2007. "Extendable Cooperative Games," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 9(6), pages 1069-1078, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aloisio Araujo & Alain Chateauneuf & José Faro, 2012. "Pricing rules and Arrow–Debreu ambiguous valuation," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 49(1), pages 1-35, January.
    2. Michel Grabisch, 2015. "Fuzzy Measures and Integrals: Recent Developments," Post-Print hal-01302377, HAL.
    3. Ghirardato, Paolo & Marinacci, Massimo, 2002. "Ambiguity Made Precise: A Comparative Foundation," Journal of Economic Theory, Elsevier, vol. 102(2), pages 251-289, February.
    4. Alain Chateauneuf & Caroline Ventura, 2009. "G-continuity, impatience and G-cores of exact games," Post-Print halshs-00442855, HAL.
    5. Ehud Lehrer, 2009. "A new integral for capacities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(1), pages 157-176, April.
    6. Strzalecki, Tomasz & Werner, Jan, 2011. "Efficient allocations under ambiguity," Journal of Economic Theory, Elsevier, vol. 146(3), pages 1173-1194, May.
    7. Alain Chateauneuf & Luciano De Castro, 2011. "Ambiguity Aversion and Absence of Trade," Discussion Papers 1535, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    8. Klaus Nehring, 2006. "Decision-Making in the Context of Imprecise Probabilistic Beliefs," Economics Working Papers 0034, Institute for Advanced Study, School of Social Science.
    9. Takao Asano & Hiroyuki Kojima, 2022. "Choquet Integrals and Belief Functions," KIER Working Papers 1077, Kyoto University, Institute of Economic Research.
    10. Chateauneuf, Alain & Ventura, Caroline, 2013. "G-continuity, impatience and myopia for Choquet multi-period utilities," Journal of Mathematical Economics, Elsevier, vol. 49(1), pages 97-105.
    11. Dominiak, Adam & Tserenjigmid, Gerelt, 2022. "Ambiguity under growing awareness," Journal of Economic Theory, Elsevier, vol. 199(C).
    12. Billot, Antoine & Vergopoulos, Vassili, 2018. "Expected utility without parsimony," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 14-21.
    13. Aouani, Zaier & Chateauneuf, Alain, 2008. "Exact capacities and star-shaped distorted probabilities," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 185-194, September.
    14. repec:dau:papers:123456789/7332 is not listed on IDEAS
    15. Shellshear, Evan, 2011. "Characterizing core stability with fuzzy games," Center for Mathematical Economics Working Papers 410, Center for Mathematical Economics, Bielefeld University.
    16. Massimiliano Amarante, 2017. "Conditional expected utility," Theory and Decision, Springer, vol. 83(2), pages 175-193, August.
    17. Peter Klibanoff & Massimo Marinacci & Sujoy Mukerji, 2011. "Definitions of ambiguous events and the smooth ambiguity model," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(2), pages 399-424, October.
    18. André, Eric, 2016. "Crisp monetary acts in multiple-priors models of decision under ambiguity," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 153-161.
    19. Simone Cerreia-Vioglio & Paolo Ghirardato & Fabio Maccheroni & Massimo Marinacci & Marciano Siniscalchi, 2011. "Rational preferences under ambiguity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(2), pages 341-375, October.
    20. Qu, Xiangyu, 2013. "Maxmin expected utility with additivity on unambiguous events," Journal of Mathematical Economics, Elsevier, vol. 49(3), pages 245-249.
    21. Estévez-Fernández, Arantza, 2012. "New characterizations for largeness of the core," Games and Economic Behavior, Elsevier, vol. 76(1), pages 160-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:hal-00685404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.