IDEAS home Printed from https://ideas.repec.org/p/gla/glaewp/2005_2.html
   My bibliography  Save this paper

Application Of The Kalman Filter For Estimating Continuous Time Term Structure Models: The Case Of Uk And Germany

Author

Listed:
  • Somnath Chatterjee

Abstract

The purpose of this paper is to see how the term structure of interest rates has evolved in the sterling and euro treasury bond markets over the period 1999-2003. German bonds have been used as a proxy for euro-denominated bonds. A state-space representation for the single-factor Cox, Ingersoll and Ross (1985) model is employed to analyse the intertemporal dynamics of the term structure. Quasi-maximum likelihood estimates of the model parameters are obtained by using the Kalman filter to calculate the likelihood function. Results of the empirical analysis show that while the unobserved instantaneous interest rate exhibits mean reverting behaviour in both the UK and Germany, the mean reversion of the interest rate process has been relatively slower in the UK. The volatility component, which shocks the process at each step in time is also higher in the UK as compared to Germany.

Suggested Citation

  • Somnath Chatterjee, 2005. "Application Of The Kalman Filter For Estimating Continuous Time Term Structure Models: The Case Of Uk And Germany," Working Papers 2005_2, Business School - Economics, University of Glasgow.
  • Handle: RePEc:gla:glaewp:2005_2
    as

    Download full text from publisher

    File URL: http://www.gla.ac.uk/media/media_22193_en.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alois L. J. Geyer & Stefan Pichler, 1999. "A State‐Space Approach To Estimate And Test Multifactor Cox‐Ingersoll‐Ross Models Of The Term Structure," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 22(1), pages 107-130, March.
    2. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
    3. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    4. Pearson, Neil D & Sun, Tong-Sheng, 1994. "Exploiting the Conditional Density in Estimating the Term Structure: An Application to the Cox, Ingersoll, and Ross Model," Journal of Finance, American Finance Association, vol. 49(4), pages 1279-1304, September.
    5. de Jong, Frank, 2000. "Time Series and Cross-Section Information in Affine Term-Structure Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 300-314, July.
    6. Duan, Jin-Chuan & Simonato, Jean-Guy, 1999. "Estimating and Testing Exponential-Affine Term Structure Models by Kalman Filter," Review of Quantitative Finance and Accounting, Springer, vol. 13(2), pages 111-135, September.
    7. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    8. Steeley, James M, 1997. "A Two-Factor Model of the U.K. Yield Curve," The Manchester School of Economic & Social Studies, University of Manchester, vol. 65(0), pages 32-58, Supplemen.
    9. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    10. Geyer, Alois L J & Pichler, Stefan, 1999. "A State-Space Approach to Estimate and Test Multifactor Cox-Ingersoll-Ross Models of the Term Structure," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 22(1), pages 107-130, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long H. Vo, 2014. "Application of Kalman Filter on modelling interest rates," Journal of Management Sciences, Geist Science, Iqra University, Faculty of Business Administration, vol. 1(1), pages 1-15, March.
    2. Flavia Antonacci & Cristina Costantini & Marco Papi, 2021. "Short-Term Interest Rate Estimation by Filtering in a Model Linking Inflation, the Central Bank and Short-Term Interest Rates," Mathematics, MDPI, vol. 9(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caggiano, Giovanni & Leonida, Leone, 2007. "A note on the empirics of the neoclassical growth model," Economics Letters, Elsevier, vol. 94(2), pages 170-176, February.
    2. Kris Jacobs & Xiaofei Li, 2008. "Modeling the Dynamics of Credit Spreads with Stochastic Volatility," Management Science, INFORMS, vol. 54(6), pages 1176-1188, June.
    3. Gonzalo Cortazar & Eduardo S. Schwartz & Lorenzo F. Naranjo, 2007. "Term-structure estimation in markets with infrequent trading," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(4), pages 353-369.
    4. Maclachlan, Iain C, 2007. "An empirical study of corporate bond pricing with unobserved capital structure dynamics," MPRA Paper 28416, University Library of Munich, Germany.
    5. Cortazar, Gonzalo & Schwartz, Eduardo S. & Naranjo, Lorezo, 2003. "Term Structure Estimation in Low-Frequency Transaction Markets: A Kalman Filter Approach with Incomplete Panel-Data," University of California at Los Angeles, Anderson Graduate School of Management qt56h775cz, Anderson Graduate School of Management, UCLA.
    6. Giuliano De Rossi, 2010. "Maximum Likelihood Estimation of the Cox–Ingersoll–Ross Model Using Particle Filters," Computational Economics, Springer;Society for Computational Economics, vol. 36(1), pages 1-16, June.
    7. Dang-Nguyen, Stéphane & Le Caillec, Jean-Marc & Hillion, Alain, 2014. "The deterministic shift extension and the affine dynamic Nelson–Siegel model," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 402-417.
    8. Peter Christoffersen & Christian Dorion & Kris Jacobs & Lotfi Karoui, 2014. "Nonlinear Kalman Filtering in Affine Term Structure Models," Management Science, INFORMS, vol. 60(9), pages 2248-2268, September.
    9. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    10. David Bolder, 2001. "Affine Term-Structure Models: Theory and Implementation," Staff Working Papers 01-15, Bank of Canada.
    11. de Jong, Frank, 2000. "Time Series and Cross-Section Information in Affine Term-Structure Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 300-314, July.
    12. Chiarella, Carl & Hung, Hing & T, Thuy-Duong, 2009. "The volatility structure of the fixed income market under the HJM framework: A nonlinear filtering approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2075-2088, April.
    13. De Rossi, Giuliano, 2004. "Kalman filtering of consistent forward rate curves: a tool to estimate and model dynamically the term structure," Journal of Empirical Finance, Elsevier, vol. 11(2), pages 277-308, March.
    14. Alan Genaro & Adilson Simonis, 2015. "Estimating doubly stochastic Poisson process with affine intensities by Kalman filter," Statistical Papers, Springer, vol. 56(3), pages 723-748, August.
    15. Monfort, Alain & Pegoraro, Fulvio & Renne, Jean-Paul & Roussellet, Guillaume, 2017. "Staying at zero with affine processes: An application to term structure modelling," Journal of Econometrics, Elsevier, vol. 201(2), pages 348-366.
    16. Michele Leonardo Bianchi, 2018. "Are multi-factor Gaussian term structure models still useful? An empirical analysis on Italian BTPs," Papers 1805.09996, arXiv.org.
    17. Junker, Markus & Szimayer, Alex & Wagner, Niklas, 2006. "Nonlinear term structure dependence: Copula functions, empirics, and risk implications," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1171-1199, April.
    18. Giuliano De Rossi, 2004. "Maximum likelihood estimation of the Cox-Ingersoll-Ross model using particle filters," Computing in Economics and Finance 2004 302, Society for Computational Economics.
    19. Falini, Jury, 2010. "Pricing caps with HJM models: The benefits of humped volatility," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1358-1367, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gla:glaewp:2005_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Business School Research Team (email available below). General contact details of provider: https://edirc.repec.org/data/dpglauk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.