IDEAS home Printed from https://ideas.repec.org/p/frz/wpaper/wp2019_24.rdf.html
   My bibliography  Save this paper

Modelling Minskyan financial cycles with fundamentalist and extrapolative price strategies: An empirical analysis via the Kalman filter approach

Author

Listed:
  • Filippo Gusella

Abstract

In this paper we empirically analyse Minskyan financial cycles in asset prices, where the cycles are driven by the presence of two unobserved evaluation price strategies: the fundamentalist and the extrapolative price strategy. To achieve this, we construct a model, that incorporates the two behavioural equations and we investigate the financial cycles via a state space model. Using the Kalman filter, the conditions for the existence of cycles can be evaluated empirically. The model is estimated for four OECD countries using the times series of equity and housing prices over the period 1970-2017 for annual data. We find evidence of cycles in the equity market for the UK, France, Germany and the USA. Regarding housing prices, we find evidence of cyclical fluctuations in the UK, France and the USA but not in Germany. For both the equity market and the housing market, we find the highest price overshooting in the UK and the USA. Our results provide empirical support for the Minskyan theory, highlighting the role of the evaluation effect for an endogenous generation of cyclical phenomena in asset prices.

Suggested Citation

  • Filippo Gusella, 2019. "Modelling Minskyan financial cycles with fundamentalist and extrapolative price strategies: An empirical analysis via the Kalman filter approach," Working Papers - Economics wp2019_24.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
  • Handle: RePEc:frz:wpaper:wp2019_24.rdf
    as

    Download full text from publisher

    File URL: https://www.disei.unifi.it/upload/sub/pubblicazioni/repec/pdf/wp24_2019.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marji Lines & Frank Westerhoff, 2006. "Expectations and the Multiplier-Accelerator Model," Springer Books, in: Tönu Puu & Iryna Sushko (ed.), Business Cycle Dynamics, chapter 9, pages 255-276, Springer.
    2. Commandeur, Jacques J.F. & Koopman, Siem Jan, 2007. "An Introduction to State Space Time Series Analysis," OUP Catalogue, Oxford University Press, number 9780199228874.
    3. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    4. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    5. Leila E Davis & Joao Paulo A de Souza & Gonzalo Hernandez, 2019. "An empirical analysis of Minsky regimes in the US economy," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 43(3), pages 541-583.
    6. Frankel, Jeffrey A & Froot, Kenneth A, 1990. "Chartists, Fundamentalists, and Trading in the Foreign Exchange Market," American Economic Review, American Economic Association, vol. 80(2), pages 181-185, May.
    7. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    8. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    9. Claudio Borio, 2014. "The financial cycle and macroeconomics: what have we learned and what are the policy implications?," Chapters, in: Ewald Nowotny & Doris Ritzberger-Grünwald & Peter Backé (ed.), Financial Cycles and the Real Economy, chapter 2, pages 10-35, Edward Elgar Publishing.
    10. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    11. Boswijk, H. Peter & Hommes, Cars H. & Manzan, Sebastiano, 2007. "Behavioral heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1938-1970, June.
    12. repec:pri:cepsud:91malkiel is not listed on IDEAS
    13. Yun Kim, 2013. "Household debt, financialization, and macroeconomic performance in the United States, 1951-2009," Journal of Post Keynesian Economics, Taylor & Francis Journals, vol. 35(4), pages 675-694.
    14. Lof, Matthijs, 2012. "Heterogeneity in stock prices: A STAR model with multivariate transition function," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1845-1854.
    15. Borio, Claudio, 2014. "The financial cycle and macroeconomics: What have we learnt?," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 182-198.
    16. Beja, Avraham & Goldman, M Barry, 1980. "On the Dynamic Behavior of Prices in Disequilibrium," Journal of Finance, American Finance Association, vol. 35(2), pages 235-248, May.
    17. Roberto Veneziani & Luca Zamparelli & Reiner Franke & Frank Westerhoff, 2017. "Taking Stock: A Rigorous Modelling Of Animal Spirits In Macroeconomics," Journal of Economic Surveys, Wiley Blackwell, vol. 31(5), pages 1152-1182, December.
    18. Chiarella, Carl & He, Xue-Zhong & Huang, Weihong & Zheng, Huanhuan, 2012. "Estimating behavioural heterogeneity under regime switching," Journal of Economic Behavior & Organization, Elsevier, vol. 83(3), pages 446-460.
    19. Roberto Dieci & Frank Westerhoff, 2012. "A simple model of a speculative housing market," Journal of Evolutionary Economics, Springer, vol. 22(2), pages 303-329, April.
    20. De Grauwe, Paul & Macchiarelli, Corrado, 2015. "Animal spirits and credit cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 59(C), pages 95-117.
    21. Bofinger, Peter & Debes, Sebastian & Gareis, Johannes & Mayer, Eric, 2013. "Monetary policy transmission in a model with animal spirits and house price booms and busts," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2862-2881.
    22. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    23. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    24. Paul De Grauwe, 2014. "Booms and Busts in Economic Activity: A Behavioral Explanation," World Scientific Book Chapters, in: Exchange Rates and Global Financial Policies, chapter 19, pages 521-556, World Scientific Publishing Co. Pte. Ltd..
    25. de Jong, Eelke & Verschoor, Willem F.C. & Zwinkels, Remco C.J., 2010. "Heterogeneity of agents and exchange rate dynamics: Evidence from the EMS," Journal of International Money and Finance, Elsevier, vol. 29(8), pages 1652-1669, December.
    26. Chiarella, Carl & He, Xue-Zhong & Zwinkels, Remco C.J., 2014. "Heterogeneous expectations in asset pricing: Empirical evidence from the S&P500," Journal of Economic Behavior & Organization, Elsevier, vol. 105(C), pages 1-16.
    27. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
    28. Greenwood-Nimmo, Matthew & Tarassow, Artur, 2016. "Monetary shocks, macroprudential shocks and financial stability," Economic Modelling, Elsevier, vol. 56(C), pages 11-24.
    29. Yun K. Kim, 2016. "Macroeconomic effects of household debt: an empirical analysis," Review of Keynesian Economics, Edward Elgar Publishing, vol. 4(2), pages 127-150, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filippo Gusella & Engelbert Stockhammer, 2021. "Testing fundamentalist–momentum trader financial cycles: An empirical analysis via the Kalman filter," Metroeconomica, Wiley Blackwell, vol. 72(4), pages 758-797, November.
    2. Filippo Gusella & Giorgio Ricchiuti, 2021. "State Space Model to Detect Cycles in Heterogeneous Agents Models," Working Papers - Economics wp2021_10.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    3. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    4. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    5. Saskia ter Ellen & Willem F. C. Verschoor, 2018. "Heterogeneous Beliefs and Asset Price Dynamics: A Survey of Recent Evidence," Dynamic Modeling and Econometrics in Economics and Finance, in: Fredj Jawadi (ed.), Uncertainty, Expectations and Asset Price Dynamics, pages 53-79, Springer.
    6. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
    7. Zheng, Min & Liu, Ruipeng & Li, Youwei, 2018. "Long memory in financial markets: A heterogeneous agent model perspective," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 38-51.
    8. Roberto Dieci & Xue-Zhong He, 2018. "Heterogeneous Agent Models in Finance," Research Paper Series 389, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Filippo Gusella & Giorgio Ricchiuti, 2022. "A State-Space Approach for Time-Series Prediction of an Heterogeneous Agent Model," Working Papers - Economics wp2022_20.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    10. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    11. Hommes, Cars & in ’t Veld, Daan, 2017. "Booms, busts and behavioural heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 101-124.
    12. Karsten Kohler & Benjamin Tippet & Engelbert Stockhammer, 2023. "House price cycles, housing systems, and growth models," European Journal of Economics and Economic Policies: Intervention, Edward Elgar Publishing, vol. 20(3), pages 461-490, December.
    13. Zhong-Qiang Zhou & Jie Li & Wei Zhang & Xiong Xiong, 2022. "Government intervention model based on behavioral heterogeneity for China’s stock market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-19, December.
    14. Filippo Gusella, 2022. "Detecting And Measuring Financial Cycles In Heterogeneous Agents Models: An Empirical Analysis," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 25(02n03), pages 1-22, March.
    15. Chiarella, Carl & ter Ellen, Saskia & He, Xue-Zhong & Wu, Eliza, 2015. "Fear or fundamentals? Heterogeneous beliefs in the European sovereign CDS market," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 19-34.
    16. Chiarella, Carl & He, Xue-Zhong & Zwinkels, Remco C.J., 2014. "Heterogeneous expectations in asset pricing: Empirical evidence from the S&P500," Journal of Economic Behavior & Organization, Elsevier, vol. 105(C), pages 1-16.
    17. Peter C. Dawson, 2015. "The capital asset pricing model in economic perspective," Applied Economics, Taylor & Francis Journals, vol. 47(6), pages 569-598, February.
    18. Campiglio, Emanuele & Lamperti, Francesco & Terranova, Roberta, 2024. "Believe me when I say green! Heterogeneous expectations and climate policy uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 165(C).
    19. Gaffeo, Edoardo & Molinari, Massimo, 2017. "Taxing financial transactions in fundamentally heterogeneous markets," Economic Modelling, Elsevier, vol. 64(C), pages 322-333.
    20. Zheng, Min & Wang, Hefei & Wang, Chengzhang & Wang, Shouyang, 2017. "Speculative behavior in a housing market: Boom and bust," Economic Modelling, Elsevier, vol. 61(C), pages 50-64.

    More about this item

    Keywords

    Minsky cycles; asset prices; financial instability hypothesis; state space model; Kalman Filter;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:frz:wpaper:wp2019_24.rdf. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giorgio Ricchiuti (email available below). General contact details of provider: https://edirc.repec.org/data/defirit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.