IDEAS home Printed from https://ideas.repec.org/p/foi/msapwp/03_2014.html
   My bibliography  Save this paper

Risk Capital Allocation: The Lorenz Set

Author

Listed:
  • Jens Leth Hougaard

    (Department of Food and Resource Economics, University of Copenhagen)

  • Aleksandrs Smilgins

    (Department of Food and Resource Economics, University of Copenhagen)

Abstract

Risk capital allocation problems have been widely discussed in the academic literature. We consider a company with multiple subunits having individual portfolios. Hence, when portfolios of subunits are merged, a diversification benefit arises: the risk of the company as a whole is smaller than the sum of the risks of the individual sub-units. The question is how to allocate the risk capital of the company among the subunits in a fair way. In this paper we propose to use the Lorenz set as an allocation method. We show that the Lorenz set is operational and coherent. Moreover, we propose a set of new axioms related directly to the problem of risk capital allocation and show that the Lorenz set satisfies these new axioms in contrast to other well-known coherent methods. Finally, we discuss how to deal with non-uniqueness of the Lorenz set.

Suggested Citation

  • Jens Leth Hougaard & Aleksandrs Smilgins, 2014. "Risk Capital Allocation: The Lorenz Set," MSAP Working Paper Series 03_2014, University of Copenhagen, Department of Food and Resource Economics.
  • Handle: RePEc:foi:msapwp:03_2014
    as

    Download full text from publisher

    File URL: http://okonomi.foi.dk/workingpapers/MSAPpdf/MSAP2014/MSAP_WP03_2014.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dutta, Bhaskar & Ray, Debraj, 1989. "A Concept of Egalitarianism under Participation Constraints," Econometrica, Econometric Society, vol. 57(3), pages 615-635, May.
    2. Arin, Javier & Kuipers, Jeroen & Vermeulen, Dries, 2003. "Some characterizations of egalitarian solutions on classes of TU-games," Mathematical Social Sciences, Elsevier, vol. 46(3), pages 327-345, December.
    3. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    4. Jens Leth Hougaard, 2009. "An Introduction to Allocation Rules," Springer Books, Springer, number 978-3-642-01828-2, January.
    5. Homburg, Carsten & Scherpereel, Peter, 2008. "How should the cost of joint risk capital be allocated for performance measurement?," European Journal of Operational Research, Elsevier, vol. 187(1), pages 208-227, May.
    6. Csóka, Péter & Herings, P. Jean-Jacques & Kóczy, László Á., 2009. "Stable allocations of risk," Games and Economic Behavior, Elsevier, vol. 67(1), pages 266-276, September.
    7. Jens Leth Hougaard & Lars Thorlund-Petersen & Bezalel Peleg, 2001. "On the set of Lorenz-maximal imputations in the core of a balanced game," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(2), pages 147-165.
    8. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    9. Javier Arin & Jeroen Kuipers & Dries Vermeulen, 2008. "An axiomatic approach to egalitarianism in TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 37(4), pages 565-580, December.
    10. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    11. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Tsanakas, Andreas & Barnett, Christopher, 2003. "Risk capital allocation and cooperative pricing of insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 239-254, October.
    13. Dutta, B, 1990. "The Egalitarian Solution and Reduced Game Properties in Convex Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(2), pages 153-169.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hougaard, Jens Leth & Smilgins, Aleksandrs, 2016. "Risk capital allocation with autonomous subunits: The Lorenz set," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 151-157.
    2. Hougaard, Jens Leth & Østerdal, Lars Peter, 2010. "Monotonicity of social welfare optima," Games and Economic Behavior, Elsevier, vol. 70(2), pages 392-402, November.
    3. Dietzenbacher, Bas, 2020. "Monotonicity and Egalitarianism (revision of CentER DP 2019-007)," Other publications TiSEM 295f156e-91ad-4177-b61a-1, Tilburg University, School of Economics and Management.
    4. Dietzenbacher, Bas, 2021. "Monotonicity and egalitarianism," Games and Economic Behavior, Elsevier, vol. 127(C), pages 194-205.
    5. Llerena, Francesc & Mauri, Llúcia, 2017. "On the existence of the Dutta–Ray’s egalitarian solution," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 92-99.
    6. Dietzenbacher, Bas & Yanovskaya, Elena, 2020. "Antiduality in exact partition games," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 116-121.
    7. Calleja, Pedro & Llerena, Francesc & Sudhölter, Peter, 2021. "Axiomatizations of Dutta-Ray’s egalitarian solution on the domain of convex games," Journal of Mathematical Economics, Elsevier, vol. 95(C).
    8. Takafumi Otsuka, 2020. "Egalitarian solution for games with discrete side payment," Papers 2003.10059, arXiv.org.
    9. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    10. Francesc Llerena & Llúcia Mauri, 2016. "Reduced games and egalitarian solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 1053-1069, November.
    11. Dietzenbacher, Bas, 2019. "The Procedural Egalitarian Solution and Egalitarian Stable Games," Other publications TiSEM 6caea8c0-1dcd-4038-88da-b, Tilburg University, School of Economics and Management.
    12. Arin Aguirre, Francisco Javier, 2003. "Egalitarian distributions in coalitional models: The Lorenz criterion," IKERLANAK 6503, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    13. Calleja, Pedro & Llerena, Francesc & Sudhölter, Peter, 2019. "Welfare egalitarianism in surplus-sharing problems and convex games," Discussion Papers on Economics 6/2019, University of Southern Denmark, Department of Economics.
    14. Dóra Balog & Tamás László Bátyi & Péter Csóka & Miklós Pintér, 2014. "Properties of risk capital allocation methods: Core Compatibility, Equal Treatment Property and Strong Monotonicity," CERS-IE WORKING PAPERS 1417, Institute of Economics, Centre for Economic and Regional Studies.
    15. Llerena Garrés, Francesc & Mauri Masdeu, Llúcia, 2014. "On reduced games and the lexmax solution," Working Papers 2072/237591, Universitat Rovira i Virgili, Department of Economics.
    16. Llerena Garrés, Francesc & Mauri Masdeu, Llúcia, 2016. "On the existence of the Dutta-Ray’s egalitarian solution," Working Papers 2072/266573, Universitat Rovira i Virgili, Department of Economics.
    17. Csóka, Péter, 2017. "Fair risk allocation in illiquid markets," Finance Research Letters, Elsevier, vol. 21(C), pages 228-234.
    18. Bas Dietzenbacher & Elena Yanovskaya, 2021. "Consistency of the equal split-off set," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 1-22, March.
    19. Dietzenbacher, Bas & Dogan, Emre, 2024. "Population monotonicity and egalitarianism," Research Memorandum 007, Maastricht University, Graduate School of Business and Economics (GSBE).
    20. Csóka, Péter & Bátyi, Tamás László & Pintér, Miklós & Balog, Dóra, 2011. "Tőkeallokációs módszerek és tulajdonságaik a gyakorlatban [Methods of capital allocation and their characteristics in practice]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 619-632.

    More about this item

    Keywords

    Risk capital; Cost allocation; Lorenz undominated elements of the core; Coherent risk allocation; Egalitarian allocation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:foi:msapwp:03_2014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geir Tveit (email available below). General contact details of provider: https://edirc.repec.org/data/msakudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.