IDEAS home Printed from https://ideas.repec.org/p/fip/fedpwp/15-44.html
   My bibliography  Save this paper

On the use of market-based probabilities for policy decisions

Author

Listed:
  • Roc Armenter

Abstract

This paper seeks to delimit conditions so that market-based probabilities provide all the information the policymaker needs to arrive at the best possible decision. Although there are practical considerations regarding how to derive market-based probabilities from financial prices, the author confines the discussion to a theoretical analysis that assumes no impediment to obtaining the market-based probabilities.

Suggested Citation

  • Roc Armenter, 2015. "On the use of market-based probabilities for policy decisions," Working Papers 15-44, Federal Reserve Bank of Philadelphia.
  • Handle: RePEc:fip:fedpwp:15-44
    as

    Download full text from publisher

    File URL: https://www.philadelphiafed.org/-/media/frbp/assets/working-papers/2015/wp15-44.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kitsul, Yuriy & Wright, Jonathan H., 2013. "The economics of options-implied inflation probability density functions," Journal of Financial Economics, Elsevier, vol. 110(3), pages 696-711.
    2. Michael D. Bauer & Glenn D. Rudebusch, 2013. "Expectations for monetary policy liftoff," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, issue nov18.
    3. Michael D. Bauer, 2014. "Options-based expectations of future policy rates," FRBSF Economic Letter, Federal Reserve Bank of San Francisco.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ren-Raw & Hsieh, Pei-lin & Huang, Jeffrey, 2018. "Crash risk and risk neutral densities," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 162-189.
    2. Robert A. Jarrow & Simon S. Kwok, 2021. "Inferring financial bubbles from option data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 1013-1046, November.
    3. Francesco Bianchi & Leonardo Melosi, 2017. "Escaping the Great Recession," American Economic Review, American Economic Association, vol. 107(4), pages 1030-1058, April.
    4. Gimeno, Ricardo & Ibáñez, Alfredo, 2018. "The eurozone (expected) inflation: An option's eyes view," Journal of International Money and Finance, Elsevier, vol. 86(C), pages 70-92.
    5. Grishchenko, Olesya V. & Vanden, Joel M. & Zhang, Jianing, 2016. "The informational content of the embedded deflation option in TIPS," Journal of Banking & Finance, Elsevier, vol. 65(C), pages 1-26.
    6. Kejin Wu & Sayar Karmakar, 2021. "Model-Free Time-Aggregated Predictions for Econometric Datasets," Forecasting, MDPI, vol. 3(4), pages 1-14, December.
    7. Datta, Deepa Dhume & Londono, Juan M. & Ross, Landon J., 2017. "Generating options-implied probability densities to understand oil market events," Energy Economics, Elsevier, vol. 64(C), pages 440-457.
    8. Banerjee, Ryan & Contreras, Juan & Mehrotra, Aaron & Zampolli, Fabrizio, 2024. "Inflation at risk in advanced and emerging market economies," Journal of International Money and Finance, Elsevier, vol. 142(C).
    9. M. Chudý & S. Karmakar & W. B. Wu, 2020. "Long-term prediction intervals of economic time series," Empirical Economics, Springer, vol. 58(1), pages 191-222, January.
    10. Reis, Ricardo, 2016. "Funding quantitative easing to target inflation," LSE Research Online Documents on Economics 67883, London School of Economics and Political Science, LSE Library.
    11. Jens Hilscher & Alon Raviv & Ricardo Reis, 2022. "Inflating Away the Public Debt? An Empirical Assessment," The Review of Financial Studies, Society for Financial Studies, vol. 35(3), pages 1553-1595.
    12. Christensen, Jens H.E. & Lopez, Jose A. & Rudebusch, Glenn D., 2015. "A probability-based stress test of Federal Reserve assets and income," Journal of Monetary Economics, Elsevier, vol. 73(C), pages 26-43.
    13. Sayar Karmakar & Marek Chudy & Wei Biao Wu, 2020. "Long-term prediction intervals with many covariates," Papers 2012.08223, arXiv.org, revised Sep 2021.
    14. Ulrich K. Müller & Mark W. Watson, 2016. "Measuring Uncertainty about Long-Run Predictions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1711-1740.
    15. Andrade, P. & Ghysels, E. & Idier, J., 2012. "Tails of Inflation Forecasts and Tales of Monetary Policy," Working papers 407, Banque de France.
    16. Dovern, Jonas & Manner, Hans, 2016. "Robust Evaluation of Multivariate Density Forecasts," VfS Annual Conference 2016 (Augsburg): Demographic Change 145547, Verein für Socialpolitik / German Economic Association.
    17. Abrahams, Michael & Adrian, Tobias & Crump, Richard K. & Moench, Emanuel & Yu, Rui, 2016. "Decomposing real and nominal yield curves," Journal of Monetary Economics, Elsevier, vol. 84(C), pages 182-200.
    18. Barletta, Andrea & Santucci de Magistris, Paolo & Violante, Francesco, 2019. "A non-structural investigation of VIX risk neutral density," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 1-20.
    19. Dovern, Jonas & Manner, Hans, 2016. "Order Invariant Evaluation of Multivariate Density Forecasts," Working Papers 0608, University of Heidelberg, Department of Economics.
    20. Sayar Karmakar & Marek Chudý & Wei Biao Wu, 2022. "Long‐term prediction intervals with many covariates," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 587-609, July.

    More about this item

    Keywords

    Policy; Market-based probabilities; policymakers;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedpwp:15-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beth Paul (email available below). General contact details of provider: https://edirc.repec.org/data/frbphus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.