IDEAS home Printed from https://ideas.repec.org/p/fip/fednsr/95589.html
   My bibliography  Save this paper

Sparse Trend Estimation

Author

Listed:

Abstract

The low-frequency movements of economic variables play a prominent role in policy analysis and decision-making. We develop a robust estimation approach for these slow-moving trend processes that is guided by a judicious choice of priors and characterized by sparsity. We present novel stylized facts from longer-run survey expectations that inform the structure of the estimation procedure. The general version of the proposed Bayesian estimator with a spike-and-slab prior accounts explicitly for cyclical dynamics. We show that it performs well in simulations against relevant benchmarks and report empirical estimates of trend growth for U.S. output and annual mean temperature.

Suggested Citation

  • Richard K. Crump & Nikolay Gospodinov & Hunter Wieman, 2023. "Sparse Trend Estimation," Staff Reports 1049, Federal Reserve Bank of New York.
  • Handle: RePEc:fip:fednsr:95589
    Note: Revised March 2024.
    as

    Download full text from publisher

    File URL: https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr1049.pdf
    File Function: Full text
    Download Restriction: no

    File URL: https://www.newyorkfed.org/research/staff_reports/sr1049.html
    File Function: Summary
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grant, Angelia L. & Chan, Joshua C.C., 2017. "Reconciling output gaps: Unobserved components model and Hodrick–Prescott filter," Journal of Economic Dynamics and Control, Elsevier, vol. 75(C), pages 114-121.
    2. Richard K. Crump & Stefano Eusepi & Marc Giannoni & Aysegul Sahin, 2019. "A Unified Approach to Measuring u," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 50(1 (Spring), pages 143-238.
    3. Holston, Kathryn & Laubach, Thomas & Williams, John C., 2017. "Measuring the natural rate of interest: International trends and determinants," Journal of International Economics, Elsevier, vol. 108(S1), pages 59-75.
    4. Lee, Sokbae & Liao, Yuan & Seo, Myung Hwan & Shin, Youngki, 2021. "Sparse HP filter: Finding kinks in the COVID-19 contact rate," Journal of Econometrics, Elsevier, vol. 220(1), pages 158-180.
    5. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    6. Thomas Laubach & John C. Williams, 2003. "Measuring the Natural Rate of Interest," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1063-1070, November.
    7. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    8. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
    9. Veronika Ročková & Edward I. George, 2018. "The Spike-and-Slab LASSO," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 431-444, January.
    10. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    11. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    12. Olivier Coibion & Yuriy Gorodnichenko & Mauricio Ulate, 2018. "The Cyclical Sensitivity in Estimates of Potential Output," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 49(2 (Fall)), pages 343-441.
    13. Canova, Fabio, 2020. "FAQ: How do I measure the Output gap?," CEPR Discussion Papers 14943, C.E.P.R. Discussion Papers.
    14. Robert J. Hodrick, 2020. "An Exploration of Trend-Cycle Decomposition Methodologies in Simulated Data," NBER Working Papers 26750, National Bureau of Economic Research, Inc.
    15. Daniel F. Schmidt & Enes Makalic, 2013. "Estimation of stationary autoregressive models with the Bayesian LASSO," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 517-531, September.
    16. Gospodinov, Nikolay & Maasoumi, Esfandiar, 2021. "Generalized aggregation of misspecified models: With an application to asset pricing," Journal of Econometrics, Elsevier, vol. 222(1), pages 451-467.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yves Schueler, 2024. "Filtering economic time series: On the cyclical properties of Hamilton’s regression filter and the Hodrick-Prescott filter," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 54, October.
    2. Yao, Fang, 2022. "Estimating the Trend of the House Price to Income Ratio in Ireland," Research Technical Papers 8/RT/22, Central Bank of Ireland.
    3. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    4. Castillo, Luis & Florián, David, 2019. "Measuring the output gap, potential output growth and natural interest rate from a semi-structural dynamic model for Peru," Working Papers 2019-012, Banco Central de Reserva del Perú.
    5. Canova, Fabio, 2020. "FAQ: How do I extract the output gap?," Working Paper Series 386, Sveriges Riksbank (Central Bank of Sweden).
    6. Martin Boďa & Mariana Považanová, 2023. "How credible are Okun coefficients? The gap version of Okun’s law for G7 economies," Economic Change and Restructuring, Springer, vol. 56(3), pages 1467-1514, June.
    7. Saeed Zaman, 2021. "A Unified Framework to Estimate Macroeconomic Stars," Working Papers 21-23R2, Federal Reserve Bank of Cleveland, revised 31 May 2024.
    8. Burger, John D. & Warnock, Francis E. & Warnock, Veronica Cacdac, 2022. "A natural level of capital flows," Journal of Monetary Economics, Elsevier, vol. 130(C), pages 1-16.
    9. Canova, Fabio, 2020. "FAQ: How do I measure the Output gap?," CEPR Discussion Papers 14943, C.E.P.R. Discussion Papers.
    10. Viv B. Hall & Peter Thomson, 2022. "A boosted HP filter for business cycle analysis:evidence from New Zealand's small open economy," CAMA Working Papers 2022-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    11. Morana, Claudio, 2024. "A new macro-financial condition index for the euro area," Econometrics and Statistics, Elsevier, vol. 29(C), pages 64-87.
    12. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    13. Melina Dritsaki & Chaido Dritsaki, 2022. "Comparison of HP Filter and the Hamilton’s Regression," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    14. Dr. James Mitchell, 2009. "Measuring Output Gap Uncertainty," National Institute of Economic and Social Research (NIESR) Discussion Papers 342, National Institute of Economic and Social Research.
    15. Marlon Fritz, 2019. "Data-Driven Local Polynomial Trend Estimation for Economic Data - Steady State Adjusting Trends," Working Papers Dissertations 49, Paderborn University, Faculty of Business Administration and Economics.
    16. Florian Eckert & Samad Sarferaz, 2019. "Agnostic Output Gap Estimation and Decomposition in Large Cross-Sections," KOF Working papers 19-467, KOF Swiss Economic Institute, ETH Zurich.
    17. Berger, Tino & Richter, Julia & Wong, Benjamin, 2022. "A unified approach for jointly estimating the business and financial cycle, and the role of financial factors," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    18. Josefine Quast & Maik H. Wolters, 2022. "Reliable Real-Time Output Gap Estimates Based on a Modified Hamilton Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 152-168, January.
    19. Fritz, Marlon, 2019. "Steady state adjusting trends using a data-driven local polynomial regression," Economic Modelling, Elsevier, vol. 83(C), pages 312-325.
    20. Robert J. Hodrick, 2020. "An Exploration of Trend-Cycle Decomposition Methodologies in Simulated Data," NBER Working Papers 26750, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    sparsity; Bayesian inference; latent variable models; trend output growth; slow-moving trends;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fednsr:95589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gabriella Bucciarelli (email available below). General contact details of provider: https://edirc.repec.org/data/frbnyus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.