IDEAS home Printed from https://ideas.repec.org/p/fip/fednsr/94243.html
   My bibliography  Save this paper

The GSCPI: A New Barometer of Global Supply Chain Pressures

Author

Abstract

We propose a novel indicator to capture pressures that arise at the global supply chain level, the Global Supply Chain Pressure Index (GSCPI). The GSCPI provides a new monitoring tool to gauge global supply chain conditions. We assess the index’s capacity to explain inflation outcomes, using the local projection method. Our analysis shows that recent inflationary pressures are closely related to the behavior of the GSCPI, especially at the level of producer price inflation in the United States and the euro area.

Suggested Citation

  • Gianluca Benigno & Julian di Giovanni & Jan J. J. Groen & Adam I. Noble, 2022. "The GSCPI: A New Barometer of Global Supply Chain Pressures," Staff Reports 1017, Federal Reserve Bank of New York.
  • Handle: RePEc:fip:fednsr:94243
    as

    Download full text from publisher

    File URL: https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr1017.pdf
    File Function: Full text
    Download Restriction: no

    File URL: https://www.newyorkfed.org/research/staff_reports/sr1017.html
    File Function: Summary
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan J. J. Groen & Kevin McNeil & Menno Middeldorp, 2013. "A New Approach for Identifying Demand and Supply Shocks in the Oil Market," Liberty Street Economics 20130325, Federal Reserve Bank of New York.
    2. Regis Barnichon & Christian Brownlees, 2019. "Impulse Response Estimation by Smooth Local Projections," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 522-530, July.
    3. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    4. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Swanson, Eric T., 2021. "Measuring the effects of federal reserve forward guidance and asset purchases on financial markets," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 32-53.
    2. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    3. Atsushi Inoue & `Oscar Jord`a & Guido M. Kuersteiner, 2023. "Inference for Local Projections," Papers 2306.03073, arXiv.org, revised Aug 2024.
    4. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    5. Lodge, David & Manu, Ana-Simona, 2022. "EME financial conditions: Which global shocks matter?," Journal of International Money and Finance, Elsevier, vol. 120(C).
    6. Geert Bekaert & Eric C. Engstrom & Nancy R. Xu, 2022. "The Time Variation in Risk Appetite and Uncertainty," Management Science, INFORMS, vol. 68(6), pages 3975-4004, June.
    7. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    8. Klaus Abberger & Michael Graff & Oliver Müller & Jan-Egbert Sturm, 2022. "Composite global indicators from survey data: the Global Economic Barometers," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 158(3), pages 917-945, August.
    9. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    10. Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021. "Machine learning and oil price point and density forecasting," Energy Economics, Elsevier, vol. 102(C).
    11. repec:ehl:lserod:53906 is not listed on IDEAS
    12. Hännikäinen, Jari, 2017. "When does the yield curve contain predictive power? Evidence from a data-rich environment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1044-1064.
    13. Maio, Paulo & Philip, Dennis, 2015. "Macro variables and the components of stock returns," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 287-308.
    14. Valentin Haddad & Serhiy Kozak & Shrihari Santosh & Stijn Van Nieuwerburgh, 2020. "Factor Timing," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 1980-2018.
    15. Mr. Luis Brandão-Marques & Mr. Gaston Gelos & Mr. Thomas Harjes & Ms. Ratna Sahay & Yi Xue, 2020. "Monetary Policy Transmission in Emerging Markets and Developing Economies," IMF Working Papers 2020/035, International Monetary Fund.
    16. Kimberly A. Berg & Chadwick C. Curtis & Steven Lugauer & Nelson C. Mark, 2021. "Demographics and Monetary Policy Shocks," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(6), pages 1229-1266, September.
    17. Lorenzo Bretscher & Alex Hsu & Andrea Tamoni, 2023. "The Real Response to Uncertainty Shocks: The Risk Premium Channel," Management Science, INFORMS, vol. 69(1), pages 119-140, January.
    18. Klaus Abberger & Michael Graff & Boriss Siliverstovs & Jan-Egbert Sturm, 2014. "The KOF Economic Barometer, Version 2014," KOF Working papers 14-353, KOF Swiss Economic Institute, ETH Zurich.
    19. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    20. Heij, C. & van Dijk, D.J.C. & Groenen, P.J.F., 2009. "Macroeconomic forecasting with real-time data: an empirical comparison," Econometric Institute Research Papers EI 2009-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    21. Pablo Pincheira & Jorge Selaive, 2011. "External imbalance, valuation adjustments and real Exchange rate: evidence of predictability in an emerging economy," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 26(1), pages 107-125, Junio.

    More about this item

    Keywords

    global supply chain; inflation; transportation costs;
    All these keywords.

    JEL classification:

    • F40 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - General
    • F10 - International Economics - - Trade - - - General
    • F20 - International Economics - - International Factor Movements and International Business - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fednsr:94243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gabriella Bucciarelli (email available below). General contact details of provider: https://edirc.repec.org/data/frbnyus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.