IDEAS home Printed from https://ideas.repec.org/p/fip/fedlwp/2010-025.html
   My bibliography  Save this paper

Identifying technology shocks in the frequency domain

Author

Listed:
  • Riccardo DiCecio
  • Michael T. Owyang

Abstract

Since Gal [1999], long-run restricted VARs have become the standard for identifying the effects of technology shocks. In a recent paper, Francis et al. [2008] proposed an alternative to identify technology as the shock that maximizes the forecast-error variance share of labor productivity at long horizons. In this paper, we propose a variant of the Max Share identification, which focuses on maximizing the variance share of labor productivity in the frequency domain. We consider the responses to technology shocks identified from various frequency bands. Two distinct technology shocks emerge. An expansionary shock increases productivity, output, and hours at business-cycle frequencies. The technology shock that maximizes productivity in the medium and long runs instead has clear contractionary effects on hours, while increasing output and productivity.

Suggested Citation

  • Riccardo DiCecio & Michael T. Owyang, 2010. "Identifying technology shocks in the frequency domain," Working Papers 2010-025, Federal Reserve Bank of St. Louis.
  • Handle: RePEc:fip:fedlwp:2010-025
    as

    Download full text from publisher

    File URL: http://research.stlouisfed.org/wp/2010/2010-025.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prescott, Edward C., 1986. "Theory ahead of business-cycle measurement," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 25(1), pages 11-44, January.
    2. David Altig & Lawrence Christiano & Martin Eichenbaum & Jesper Linde, 2011. "Firm-Specific Capital, Nominal Rigidities and the Business Cycle," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 225-247, April.
    3. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    4. Nikolay Gospodinov & Alex Maynard & Elena Pesavento, 2011. "Sensitivity of Impulse Responses to Small Low-Frequency Comovements: Reconciling the Evidence on the Effects of Technology Shocks," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 455-467, October.
    5. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    6. Galí, Jordi & Rabanal, Pau, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBC Model Fit Post-War US Data?," CEPR Discussion Papers 4522, C.E.P.R. Discussion Papers.
    7. Faust, Jon, 1998. "The robustness of identified VAR conclusions about money," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 49(1), pages 207-244, December.
    8. Harald Uhlig, 2004. "Do Technology Shocks Lead to a Fall in Total Hours Worked?," Journal of the European Economic Association, MIT Press, vol. 2(2-3), pages 361-371, 04/05.
    9. Neville Francis & Valerie A. Ramey, 2009. "Measures of per Capita Hours and Their Implications for the Technology-Hours Debate," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(6), pages 1071-1097, September.
    10. Fabio Canova & David Lopez-Salido & Claudio Michelacci, 2010. "The effects of technology shocks on hours and output: a robustness analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 755-773.
    11. Fernald, John G., 2007. "Trend breaks, long-run restrictions, and contractionary technology improvements," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2467-2485, November.
    12. David Altig & Lawrence Christiano & Martin Eichenbaum & Jesper Linde, 2011. "Firm-Specific Capital, Nominal Rigidities and the Business Cycle," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 225-247, April.
    13. G. Peersman & R. Straub, 2006. "Putting the New Keynesian Model to a Test," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/375, Ghent University, Faculty of Economics and Business Administration.
    14. Pesavento, Elena & Rossi, Barbara, 2005. "Do Technology Shocks Drive Hours Up Or Down? A Little Evidence From An Agnostic Procedure," Macroeconomic Dynamics, Cambridge University Press, vol. 9(4), pages 478-488, September.
    15. Hansen, Gary D., 1997. "Technical progress and aggregate fluctuations," Journal of Economic Dynamics and Control, Elsevier, vol. 21(6), pages 1005-1023, June.
    16. Caballero, Ricardo J & Hammour, Mohamad L, 1994. "The Cleansing Effect of Recessions," American Economic Review, American Economic Association, vol. 84(5), pages 1350-1368, December.
    17. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2007. "Assessing Structural VARs," NBER Chapters, in: NBER Macroeconomics Annual 2006, Volume 21, pages 1-106, National Bureau of Economic Research, Inc.
    18. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
    19. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
    20. Faust, Jon & Leeper, Eric M, 1997. "When Do Long-Run Identifying Restrictions Give Reliable Results?," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 345-353, July.
    21. Sims, Christopher A, 1972. "Money, Income, and Causality," American Economic Review, American Economic Association, vol. 62(4), pages 540-552, September.
    22. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dieppe, Alistair & Francis, Neville & Kindberg-Hanlon, Gene, 2021. "The identification of dominant macroeconomic drivers: coping with confounding shocks," Working Paper Series 2534, European Central Bank.
    2. Dieppe,Alistair Matthew & Francis,Neville Ricardo & Kindberg-Hanlon,Gene, 2021. "Technology and Demand Drivers of Productivity Dynamics in Developed and Emerging Market Economies," Policy Research Working Paper Series 9525, The World Bank.
    3. Domenico Giannone & Michèle Lenza & Lucrezia Reichlin, 2012. "Money, Credit, Monetary Policy and the Business Cycle in the Euro Area," Working Papers ECARES ECARES 2012-008, ULB -- Universite Libre de Bruxelles.
    4. Guay, Alain & Pelgrin, Florian, 2023. "Structural VAR models in the Frequency Domain," Journal of Econometrics, Elsevier, vol. 236(1).
    5. Dieppe, Alistair & Francis, Neville & Kindberg-Hanlon, Gene, 2021. "Technological and non-technological drivers of productivity dynamics in developed and emerging market economies," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    6. Lovcha, Yuliya & Pérez Laborda, Àlex, 2016. "The Variance-Frequency Decomposition as an Instrument for VAR Identification: an Application to Technology Shocks," Working Papers 2072/261537, Universitat Rovira i Virgili, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gubler, Matthias & Hertweck, Matthias S., 2013. "Commodity price shocks and the business cycle: Structural evidence for the U.S," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 324-352.
    2. Gert Peersman & Roland Straub, 2009. "Technology Shocks And Robust Sign Restrictions In A Euro Area Svar," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 727-750, August.
    3. Fabio Canova & David Lopez-Salido & Claudio Michelacci, 2010. "The effects of technology shocks on hours and output: a robustness analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 755-773.
    4. Cristiano Cantore & Miguel León-Ledesma & Peter McAdam & Alpo Willman, 2014. "Shocking Stuff: Technology, Hours, And Factor Substitution," Journal of the European Economic Association, European Economic Association, vol. 12(1), pages 108-128, February.
    5. Rujin, Svetlana, 2024. "Labor market institutions and technology-induced labor adjustment along the extensive and intensive margins," Journal of Macroeconomics, Elsevier, vol. 79(C).
    6. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    7. Rujin, Svetlana, 2019. "What are the effects of technology shocks on international labor markets?," Ruhr Economic Papers 806, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    8. Martial Dupaigne & Patrick Feve & Julien Matheron, 2007. "Technology Shocks, Non-stationary Hours and DSVAR," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(2), pages 238-255, April.
    9. Lovcha, Yuliya & Pérez Laborda, Àlex, 2016. "The Variance-Frequency Decomposition as an Instrument for VAR Identification: an Application to Technology Shocks," Working Papers 2072/261537, Universitat Rovira i Virgili, Department of Economics.
    10. Morten O. Ravn & Saverio Simonelli, 2007. "Labor Market Dynamics and the Business Cycle: Structural Evidence for the United States," Scandinavian Journal of Economics, Wiley Blackwell, vol. 109(4), pages 743-777, December.
    11. Patrick Fève & Alain Guay, 2010. "Identification of Technology Shocks in Structural Vars," Economic Journal, Royal Economic Society, vol. 120(549), pages 1284-1318, December.
    12. Canova, Fabio & Michelacci, Claudio & López-Salido, J David, 2007. "The Labour Market Effects of Technology Shocks," CEPR Discussion Papers 6365, C.E.P.R. Discussion Papers.
    13. Cantore, Cristiano & Ferroni, Filippo & León-Ledesma, Miguel A., 2017. "The dynamics of hours worked and technology," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 67-82.
    14. Ali YOUSEFI & Sadegh KHALILIAN & Mohammad Hadi HAJIAN, 2010. "The Role of Water Sector in Iranian Economy: A CGE Modeling Approach," EcoMod2010 259600173, EcoMod.
    15. Fabio Canova & David López-Salido & Claudio Michelacci, 2006. "On the robust effects of technology shocks on hours worked and output," Economics Working Papers 1013, Department of Economics and Business, Universitat Pompeu Fabra, revised Feb 2008.
    16. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    17. Giancarlo Corsetti & Luca Dedola & Sylvain Leduc, 2008. "Productivity, External Balance, and Exchange Rates: Evidence on the Transmission Mechanism among G7 Countries," NBER Chapters, in: NBER International Seminar on Macroeconomics 2006, pages 117-194, National Bureau of Economic Research, Inc.
    18. Carrillo, Julio A., 2012. "How well does sticky information explain the dynamics of inflation, output, and real wages?," Journal of Economic Dynamics and Control, Elsevier, vol. 36(6), pages 830-850.
    19. Justiniano, Alejandro & Primiceri, Giorgio E. & Tambalotti, Andrea, 2010. "Investment shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 132-145, March.
    20. Francesco Furlanetto & Ørjan Robstad & Pål Ulvedal & Antoine Lepetit, 2020. "Estimating hysteresis effects," Working Paper 2020/13, Norges Bank.

    More about this item

    Keywords

    Business cycles; Technology - Economic aspects; Productivity;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:2010-025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anna Oates (email available below). General contact details of provider: https://edirc.repec.org/data/frbslus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.