IDEAS home Printed from https://ideas.repec.org/p/fip/fedlwp/1988-001.html
   My bibliography  Save this paper

Forecasting inflation using interest rate and time-series models: some international evidence

Author

Listed:
  • Rik Hafer
  • Scott E. Hein

Abstract

It has been suggested that inflation forecasts derived from short-term interest rates are as accurate as time-series forecasts. Previous analyses of this notion have focused on U.S. data, providing mixed results. In this article, the authors extend previous work by testing the hypothesis using data taken from the United States and five other countries. Using monthly Eurocurrency rates and the consumer price index for the period 1967-86, their results indicate that time-series forecasts of inflation have equal or lower forecast errors and have unbiased predictions more often than the interest-rate-based forecasts. Copyright 1990 by the University of Chicago.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Rik Hafer & Scott E. Hein, 1988. "Forecasting inflation using interest rate and time-series models: some international evidence," Working Papers 1988-001, Federal Reserve Bank of St. Louis.
  • Handle: RePEc:fip:fedlwp:1988-001
    as

    Download full text from publisher

    File URL: http://research.stlouisfed.org/wp/1988/1988-001.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ashley, R & Granger, C W J & Schmalensee, R, 1980. "Advertising and Aggregate Consumption: An Analysis of Causality," Econometrica, Econometric Society, vol. 48(5), pages 1149-1167, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mester Ioana Teodora, 2009. "VEC MODEL OF DEVELOPING COUNTRY INFLATIONARY DYNAMICS a€“ AN EMPIRICAL STUDY a€“ THE CASE OF ROMANIA," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 2(1), pages 677-682, May.
    2. Param Silvapulle & Ramya Hewarathna, 2002. "Robust estimation and inflation forecasting," Applied Economics, Taylor & Francis Journals, vol. 34(18), pages 2277-2282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaojie Xu, 2017. "The rolling causal structure between the Chinese stock index and futures," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(4), pages 491-509, November.
    2. Covey, Ted & Bessler, David A., 1991. "The Role of Futures in Daily Forward Pricing," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271282, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Henry Bryant & Michael Haigh, 2004. "Bid-ask spreads in commodity futures markets," Applied Financial Economics, Taylor & Francis Journals, vol. 14(13), pages 923-936.
    4. Ashley, Richard, 2003. "Statistically significant forecasting improvements: how much out-of-sample data is likely necessary?," International Journal of Forecasting, Elsevier, vol. 19(2), pages 229-239.
    5. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    6. Pär Stockhammar & Pär Österholm, 2018. "Do inflation expectations granger cause inflation?," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(2), pages 403-431, August.
    7. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    8. Imad Moosa & Kelly Burns, 2014. "Error correction modelling and dynamic specifications as a conduit to outperforming the random walk in exchange rate forecasting," Applied Economics, Taylor & Francis Journals, vol. 46(25), pages 3107-3118, September.
    9. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2014. "Causality and predictability in distribution: The ethanol–food price relation revisited," Energy Economics, Elsevier, vol. 42(C), pages 152-160.
    10. Zapata, Hector O. & Gil, Jose M., 1999. "Cointegration and causality in international agricultural economics research," Agricultural Economics, Blackwell, vol. 20(1), pages 1-9, January.
    11. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    12. Parigi, Giuseppe & Golinelli, Roberto, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    13. West, Kenneth D & McCracken, Michael W, 1998. "Regression-Based Tests of Predictive Ability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 817-840, November.
    14. Fullerton, Thomas M. & Kelley, Brian W., 2008. "El Paso Housing Sector Econometric Forecast Accuracy," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 40(1), pages 385-402, April.
    15. Hudson, Michael A. & Capps, Oral, Jr., 1984. "Forecasting Ex-Vessel Prices for Hard Blue Crabs in the Chesapeake Bay Region: Individual and Composite Methods," Journal of the Northeastern Agricultural Economics Council, Northeastern Agricultural and Resource Economics Association, vol. 13(1), pages 1-7, April.
    16. Francisco F. R. Ramos, 1996. "Forecasting market shares using VAR and BVAR models: A comparison of their forecasting performance," Econometrics 9601003, University Library of Munich, Germany.
    17. Benedetto Molinari & Francesco Turino, 2018. "Advertising and Aggregate Consumption: A Bayesian DSGE Assessment," Economic Journal, Royal Economic Society, vol. 128(613), pages 2106-2130, August.
    18. Ye, Haichun & Ashley, Richard & Guerard, John, 2015. "Comparing the effectiveness of traditional vs. mechanized identification methods in post-sample forecasting for a macroeconomic Granger causality analysis," International Journal of Forecasting, Elsevier, vol. 31(2), pages 488-500.
    19. Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017. "Forecasting GDP with global components: This time is different," International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
    20. Monticini, Andrea & Ravazzolo, Francesco, 2014. "Forecasting the intraday market price of money," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 304-315.

    More about this item

    Keywords

    Inflation (Finance); Forecasting;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:1988-001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anna Oates (email available below). General contact details of provider: https://edirc.repec.org/data/frbslus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.