IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1412.2152.html
   My bibliography  Save this paper

Beyond the square root: Evidence for logarithmic dependence of market impact on size and participation rate

Author

Listed:
  • Elia Zarinelli
  • Michele Treccani
  • J. Doyne Farmer
  • Fabrizio Lillo

Abstract

We make an extensive empirical study of the market impact of large orders (metaorders) executed in the U.S. equity market between 2007 and 2009. We show that the square root market impact formula, which is widely used in the industry and supported by previous published research, provides a good fit only across about two orders of magnitude in order size. A logarithmic functional form fits the data better, providing a good fit across almost five orders of magnitude. We introduce the concept of an "impact surface" to model the impact as a function of both the duration and the participation rate of the metaorder, finding again a logarithmic dependence. We show that during the execution the price trajectory deviates from the market impact, a clear indication of non-VWAP executions. Surprisingly, we find that sometimes the price starts reverting well before the end of the execution. Finally we show that, although on average the impact relaxes to approximately 2/3 of the peak impact, the precise asymptotic value of the price depends on the participation rate and on the duration of the metaorder. We present evidence that this might be due to a herding phenomenon among metaorders.

Suggested Citation

  • Elia Zarinelli & Michele Treccani & J. Doyne Farmer & Fabrizio Lillo, 2014. "Beyond the square root: Evidence for logarithmic dependence of market impact on size and participation rate," Papers 1412.2152, arXiv.org.
  • Handle: RePEc:arx:papers:1412.2152
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1412.2152
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. B. Tóth & F. Lillo & J. D. Farmer, 2010. "Segmentation algorithm for non-stationary compound Poisson processes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 78(2), pages 235-243, November.
    2. Goldstein, Michael A. & Irvine, Paul & Puckett, Andy, 2011. "Purchasing IPOs with Commissions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 46(5), pages 1193-1225, October.
    3. Gianbiagio Curato & Jim Gatheral & Fabrizio Lillo, 2014. "Optimal execution with nonlinear transient market impact," Papers 1412.4839, arXiv.org.
    4. Emmanuel Bacry & Adrian Iuga & Matthieu Lasnier & Charles-Albert Lehalle, 2014. "Market impacts and the life cycle of investors orders," Papers 1412.0217, arXiv.org, revised Dec 2014.
    5. Damian Eduardo Taranto & Giacomo Bormetti & Fabrizio Lillo, 2014. "The adaptive nature of liquidity taking in limit order books," Papers 1403.0842, arXiv.org, revised Apr 2014.
    6. Iacopo Mastromatteo & Bence Toth & Jean-Philippe Bouchaud, 2013. "Agent-based models for latent liquidity and concave price impact," Papers 1311.6262, arXiv.org, revised Dec 2014.
    7. Andy Puckett & Xuemin (Sterling) Yan, 2011. "The Interim Trading Skills of Institutional Investors," Journal of Finance, American Finance Association, vol. 66(2), pages 601-633, April.
    8. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2006. "Institutional Investors and Stock Market Volatility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 461-504.
    9. Lillo Fabrizio & Farmer J. Doyne, 2004. "The Long Memory of the Efficient Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-35, September.
    10. Austin Gerig, 2008. "A Theory for Market Impact: How Order Flow Affects Stock Price," Papers 0804.3818, arXiv.org, revised Jul 2008.
    11. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    12. Busse, Jeffrey A. & Clifton Green, T. & Jegadeesh, Narasimhan, 2012. "Buy-side trades and sell-side recommendations: Interactions and information content," Journal of Financial Markets, Elsevier, vol. 15(2), pages 207-232.
    13. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    14. Jim Gatheral, 2010. "No-dynamic-arbitrage and market impact," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 749-759.
    15. Michael A. Goldstein & Paul Irvine & Eugene Kandel & Zvi Wiener, 2009. "Brokerage Commissions and Institutional Trading Patterns," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5175-5212, December.
    16. Esteban Moro & Javier Vicente & Luis G. Moyano & Austin Gerig & J. Doyne Farmer & Gabriella Vaglica & Fabrizio Lillo & Rosario N. Mantegna, 2009. "Market impact and trading profile of large trading orders in stock markets," Papers 0908.0202, arXiv.org.
    17. Bence Toth & Yves Lemperiere & Cyril Deremble & Joachim de Lataillade & Julien Kockelkoren & Jean-Philippe Bouchaud, 2011. "Anomalous price impact and the critical nature of liquidity in financial markets," Papers 1105.1694, arXiv.org, revised Nov 2011.
    18. Nataliya Bershova & Dmitry Rakhlin, 2013. "The non-linear market impact of large trades: evidence from buy-side order flow," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1759-1778, November.
    19. Chemmanur, Thomas J. & He, Shan & Hu, Gang, 2009. "The role of institutional investors in seasoned equity offerings," Journal of Financial Economics, Elsevier, vol. 94(3), pages 384-411, December.
    20. X. Brokmann & E. Serie & J. Kockelkoren & J. -P. Bouchaud, 2014. "Slow decay of impact in equity markets," Papers 1407.3390, arXiv.org.
    21. J. Doyne Farmer & Austin Gerig & Fabrizio Lillo & Henri Waelbroeck, 2013. "How efficiency shapes market impact," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1743-1758, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianbiagio Curato & Jim Gatheral & Fabrizio Lillo, 2014. "Optimal execution with nonlinear transient market impact," Papers 1412.4839, arXiv.org.
    2. Marek Andrzej Kocinski, 2021. "The Analysis of Some Trading Strategy on the Stock Market with the Liquidity Shortage," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 273-286.
    3. Jonathan Donier & Julius Bonart, 2014. "A Million Metaorder Analysis of Market Impact on the Bitcoin," Papers 1412.4503, arXiv.org, revised Sep 2015.
    4. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thibault Jaisson, 2014. "Market impact as anticipation of the order flow imbalance," Papers 1402.1288, arXiv.org.
    2. Fr'ed'eric Bucci & Iacopo Mastromatteo & Zolt'an Eisler & Fabrizio Lillo & Jean-Philippe Bouchaud & Charles-Albert Lehalle, 2018. "Co-impact: Crowding effects in institutional trading activity," Papers 1804.09565, arXiv.org, revised Jul 2018.
    3. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    4. Emilio Said, 2022. "Market Impact: Empirical Evidence, Theory and Practice," Working Papers hal-03668669, HAL.
    5. Jonathan Donier & Julius Bonart, 2014. "A Million Metaorder Analysis of Market Impact on the Bitcoin," Papers 1412.4503, arXiv.org, revised Sep 2015.
    6. Bence Toth & Imon Palit & Fabrizio Lillo & J. Doyne Farmer, 2011. "Why is order flow so persistent?," Papers 1108.1632, arXiv.org, revised Nov 2014.
    7. Tóth, Bence & Palit, Imon & Lillo, Fabrizio & Farmer, J. Doyne, 2015. "Why is equity order flow so persistent?," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 218-239.
    8. Fabrizio Lillo, 2021. "Order flow and price formation," Papers 2105.00521, arXiv.org.
    9. Emilio Said & Ahmed Bel Hadj Ayed & Alexandre Husson & Fr'ed'eric Abergel, 2018. "Market Impact: A Systematic Study of Limit Orders," Papers 1802.08502, arXiv.org, revised May 2022.
    10. Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-11, October.
    11. Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights," Post-Print hal-01277584, HAL.
    12. Weibing Huang & Charles-Albert Lehalle & Mathieu Rosenbaum, 2015. "Simulating and Analyzing Order Book Data: The Queue-Reactive Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 107-122, March.
    13. Mathias Pohl & Alexander Ristig & Walter Schachermayer & Ludovic Tangpi, 2017. "The amazing power of dimensional analysis: Quantifying market impact," Papers 1702.05434, arXiv.org, revised Sep 2017.
    14. Paolo Barucca & Fabrizio Lillo, 2017. "Behind the price: on the role of agent's reflexivity in financial market microstructure," Papers 1708.07047, arXiv.org.
    15. Emilio Said, 2022. "Market Impact: Empirical Evidence, Theory and Practice," Papers 2205.07385, arXiv.org.
    16. Bence Toth & Yves Lemperiere & Cyril Deremble & Joachim de Lataillade & Julien Kockelkoren & Jean-Philippe Bouchaud, 2011. "Anomalous price impact and the critical nature of liquidity in financial markets," Papers 1105.1694, arXiv.org, revised Nov 2011.
    17. J. Donier & J. Bonart & I. Mastromatteo & J.-P. Bouchaud, 2015. "A fully consistent, minimal model for non-linear market impact," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1109-1121, July.
    18. Hu, Gang & Jo, Koren M. & Wang, Yi Alex & Xie, Jing, 2018. "Institutional trading and Abel Noser data," Journal of Corporate Finance, Elsevier, vol. 52(C), pages 143-167.
    19. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    20. B. Tóth & Z. Eisler & F. Lillo & J. Kockelkoren & J.-P. Bouchaud & J.D. Farmer, 2012. "How does the market react to your order flow?," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1015-1024, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1412.2152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.