IDEAS home Printed from https://ideas.repec.org/p/fip/feddwp/9109.html
   My bibliography  Save this paper

Detecting level shifts in time series: misspecification and a proposed solution

Author

Listed:
  • Nathan S. Balke

Abstract

No abstract is available for this item.

Suggested Citation

  • Nathan S. Balke, 1991. "Detecting level shifts in time series: misspecification and a proposed solution," Working Papers 9109, Federal Reserve Bank of Dallas.
  • Handle: RePEc:fip:feddwp:9109
    Note: Published as: Balke, Nathan S. (1993), "Detecting Level Shifts in Time Series," Journal of Business and Economic Statistics 11 (1): 81-92.
    as

    Download full text from publisher

    File URL: https://www.dallasfed.org/~/media/documents/research/papers/1991/wp9109.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Chung & Tiao, George C, 1990. "Random Level-Shift Time Series Models, ARIMA Approximations, and Level-Shift Detection," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 83-97, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    2. repec:ipg:wpaper:2014-503 is not listed on IDEAS
    3. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    4. Christopher A. Sims, 1993. "A Nine-Variable Probabilistic Macroeconomic Forecasting Model," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 179-212, National Bureau of Economic Research, Inc.
    5. Smith, Aaron, 2005. "Level Shifts and the Illusion of Long Memory in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 321-335, July.
    6. Charfeddine, Lanouar & Guégan, Dominique, 2012. "Breaks or long memory behavior: An empirical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5712-5726.
    7. Antonio E. Noriega & Araceli Ramírez-Zamora, 1999. "Unit roots and multiple structural breaks in real output," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 14(2), pages 163-188.
    8. Aaron Smith, 2005. "Forecasting in the presence of level shifts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(8), pages 557-574.
    9. Bisaglia, Luisa & Gerolimetto, Margherita, 2008. "Forecasting long memory time series when occasional breaks occur," Economics Letters, Elsevier, vol. 98(3), pages 253-258, March.
    10. Dominique Guegan, 2007. "La persistance dans les marchés financiers," Post-Print halshs-00179269, HAL.
    11. Lanouar Charfeddine & Dominique Guegan, 2009. "Breaks or Long Memory Behaviour: An empirical Investigation," Post-Print halshs-00377485, HAL.
    12. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
    13. Olivier Darné & Amélie Charles, 2011. "Large shocks in U.S. macroeconomic time series: 1860-1988," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 5(1), pages 79-100, January.
    14. Junttila, Juha, 2001. "Structural breaks, ARIMA model and Finnish inflation forecasts," International Journal of Forecasting, Elsevier, vol. 17(2), pages 203-230.
    15. Chareka, Patrick & Matarise, Florance & Turner, Rolf, 2006. "A test for additive outliers applicable to long-memory time series," Journal of Economic Dynamics and Control, Elsevier, vol. 30(4), pages 595-621, April.
    16. Niels Haldrup & Robinson Kruse, 2014. "Discriminating between fractional integration and spurious long memory," CREATES Research Papers 2014-19, Department of Economics and Business Economics, Aarhus University.
    17. Ozgen Sayginsoy & Tim Vogelsang, 2004. "Powerful Tests of Structural Change That are Robust to Strong Serial Correlation," Discussion Papers 04-08, University at Albany, SUNY, Department of Economics.
    18. Shin, Dong Wan & Sarkar, Sahadeb & Lee, Jong Hyup, 1996. "Unit root tests for time series with outliers," Statistics & Probability Letters, Elsevier, vol. 30(3), pages 189-197, October.
    19. F. Javier Trivez & Javier Nievas, 1998. "Analyzing the effects of level shifts and temporary changes on the identification of ARIMA models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(3), pages 409-424.
    20. Jumming Hsu & Xu-Ming Wang & Chunchi Wu, 1998. "The Role of Earnings Information in Corporate Dividend Decisions," Management Science, INFORMS, vol. 44(12-Part-2), pages 173-191, December.
    21. Charles, Amélie & Darné, Olivier, 2012. "Trends and random walks in macroeconomic time series: A reappraisal," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 167-180.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:feddwp:9109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Amy Chapman (email available below). General contact details of provider: https://edirc.repec.org/data/frbdaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.