IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2008.68.html
   My bibliography  Save this paper

Impact of Revised CO2 Growth Projections for China on Global Stabilization Goals

Author

Listed:
  • Geoffrey J. Blanford

    (Electric Power Research Institute)

  • Richard G. Richels

    (Electric Power Research Institute)

  • Thomas F. Rutherford

    (Centre for Energy Policy and Economics)

Abstract

Recent growth in carbon dioxide emissions from China’s energy sector has exceeded expectations. In a major US government study of future emissions released in 2007 (1), participating models appear to have substantially underestimated the near-term rate of increase in China’s emissions. We present a recalibration of one of those models to be consistent with both current observations and historical development patterns. The implications of the new specification for the feasibility of commonly discussed stabilization targets, particularly when considering incomplete global participation, are profound. Unless China’s emissions begin to depart soon from their (newly projected) business-as-usual path, stringent stabilization goals may be unattainable. The current round of global policy negotiations must engage China and other developing countries, not to the exclusion of emissions reductions in the developed world and possibly with the help of significant financial incentives, if such goals are to be achieved. It is in all nations’ interests to work cooperatively to limit our interference with the global climate.

Suggested Citation

  • Geoffrey J. Blanford & Richard G. Richels & Thomas F. Rutherford, 2008. "Impact of Revised CO2 Growth Projections for China on Global Stabilization Goals," Working Papers 2008.68, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2008.68
    as

    Download full text from publisher

    File URL: https://feem-media.s3.eu-central-1.amazonaws.com/wp-content/uploads/NDL2008-068.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fisher-Vanden, Karen & Jefferson, Gary H. & Liu, Hongmei & Tao, Quan, 2004. "What is driving China's decline in energy intensity?," Resource and Energy Economics, Elsevier, vol. 26(1), pages 77-97, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    2. Zheng, Yingmei & Qi, Jianhong & Chen, Xiaoliang, 2011. "The effect of increasing exports on industrial energy intensity in China," Energy Policy, Elsevier, vol. 39(5), pages 2688-2698, May.
    3. Liao, Hua & Wei, Yi-Ming, 2010. "China's energy consumption: A perspective from Divisia aggregation approach," Energy, Elsevier, vol. 35(1), pages 28-34.
    4. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2017. "Energy intensity and convergence in Swedish industry: A combined econometric and decomposition analysis," Energy Economics, Elsevier, vol. 62(C), pages 347-356.
    5. Adom, Philip Kofi, 2015. "Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria," Energy, Elsevier, vol. 88(C), pages 334-350.
    6. Hui Fang & Chunyu Jiang & Tufail Hussain & Xiaoye Zhang & Qixin Huo, 2022. "Input Digitization of the Manufacturing Industry and Carbon Emission Intensity Based on Testing the World and Developing Countries," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    7. Hübler, Michael, 2011. "Technology diffusion under contraction and convergence: A CGE analysis of China," Energy Economics, Elsevier, vol. 33(1), pages 131-142, January.
    8. Alvarez-Herranz, Agustin & Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Cantos, José María, 2017. "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Elsevier, vol. 105(C), pages 386-397.
    9. Vennemo, Haakon & Aunan, Kristin & He, Jianwu & Hu, Tao & Li, Shantong & Rypd3al, Kristin, 2008. "Environmental impacts of China's WTO-accession," Ecological Economics, Elsevier, vol. 64(4), pages 893-911, February.
    10. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    11. Ma, Chunbo & Stern, David I., 2016. "Long-run estimates of interfuel and interfactor elasticities," Resource and Energy Economics, Elsevier, vol. 46(C), pages 114-130.
    12. Lin, Boqiang & Du, Zhili, 2017. "Promoting energy conservation in China's metallurgy industry," Energy Policy, Elsevier, vol. 104(C), pages 285-294.
    13. Bagayev, Igor & Najman, Boris, 2013. "Less quality more costs: Does local power sector reliability matter for electricity intensity?," MPRA Paper 46943, University Library of Munich, Germany.
    14. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    15. Hübler, Michael & Keller, Andreas, 2010. "Energy savings via FDI? Empirical evidence from developing countries," Environment and Development Economics, Cambridge University Press, vol. 15(1), pages 59-80, February.
    16. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng & Wu, Junlong, 2009. "Research on the energy-saving effect of energy policies in China: 1982-2006," Energy Policy, Elsevier, vol. 37(7), pages 2475-2480, July.
    17. Chang, Tzu-Pu & Hu, Jin-Li, 2010. "Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China," Applied Energy, Elsevier, vol. 87(10), pages 3262-3270, October.
    18. Zhu, Yongbin & Shi, Yajuan & Wang, Zheng, 2014. "How much CO2 emissions will be reduced through industrial structure change if China focuses on domestic rather than international welfare?," Energy, Elsevier, vol. 72(C), pages 168-179.
    19. Gritli, Mohamed Ilyes & Charfi, Fatma Marrakchi, 2023. "The determinants of oil consumption in Tunisia: Fresh evidence from NARDL approach and asymmetric causality test," Energy, Elsevier, vol. 284(C).
    20. Pauline Lacour & Catherine Figuière, 2011. "Environmentally friendly technologies transfers through trade flows from Japan to China - An approach by bilateral trade in environmental goods," Post-Print halshs-00628832, HAL.

    More about this item

    Keywords

    Energy-Economy Modeling; China; Economic Growth Rates; Energy Intensity; International Climate Policy;
    All these keywords.

    JEL classification:

    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2008.68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alberto Prina Cerai (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.