IDEAS home Printed from https://ideas.repec.org/p/fdi/wpaper/466.html
   My bibliography  Save this paper

L’(absence d’) impact de l’impact : pourquoi les évaluations d’impact conduisent rarement à une prise de décision politique fondée sur les faits

Author

Listed:
  • Jean-Louis ARCAND

    (Institut de hautes études internationales et du développement de Genève)

Abstract

Une question récurrente qui déroute plusieurs chercheurs et certains responsables politiques est celle de savoir pourquoi les évaluations d’impact, qui sont devenues monnaie courante dans le domaine du développement, ont si peu d’impact sur la prise de décision à proprement parler. Dans cet article, j’étudie l’impact des évaluations d’impact. Je fais appel à un cadre bayésien simple emboîté dans un modèle standard reposant sur une fonction de « contest success ». Avec ce modèle de concurrence entre des décideurs anti-évaluation, des décideurs bayésiens et des évaluateurs fréquentistes, je montre que la probabilité d’annulation d’un programme est une fonction décroissante de l’impact estimé par l’évaluation et de la croyance a priori sur la base de laquelle le programme a été initialement approuvé. En outre, la probabilité d’annulation est une fonction décroissante de l’efficacité de l’influence exercée par les évaluateurs fréquentistes. Dans la mesure où il est fort probable que cette efficacité en termes de lobbying des évaluateurs fréquentistes soit proche de zéro dans la vraie vie, la probabilité d’annulation d’un programme qui avait été approuvé au départ, bien qu’il soit entaché d’une évaluation très négative, est extrêmement faible. Le modèle fournit ainsi une explication possible de la raison pour laquelle les évaluations d’impact ont si peu d’impact sur la prise de décision, et pourquoi elles ont si peu contribué à la prise de décision fondée sur les faits.

Suggested Citation

  • Jean-Louis ARCAND, 2013. "L’(absence d’) impact de l’impact : pourquoi les évaluations d’impact conduisent rarement à une prise de décision politique fondée sur les faits," Working Papers P73, FERDI.
  • Handle: RePEc:fdi:wpaper:466
    as

    Download full text from publisher

    File URL: http://www.ferdi.fr/sites/www.ferdi.fr/files/publication/fichiers/WP73_JLArcand_web.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John, 2001. "A note on some limitations of CRRA utility," Economics Letters, Elsevier, vol. 71(3), pages 341-345, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bidarkota, Prasad V. & Dupoyet, Brice V. & McCulloch, J. Huston, 2009. "Asset pricing with incomplete information and fat tails," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1314-1331, June.
    2. Jean-Louis Arcand, 2014. "The (Lack of) Impact of Impact: Why Impact Evaluations Seldom Lead to Evidence-based Policymaking," Revue d’économie du développement, De Boeck Université, vol. 22(HS01), pages 289-311.
    3. Ammann, Manuel & Coqueret, Guillaume & Schade, Jan-Philip, 2016. "Characteristics-based portfolio choice with leverage constraints," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 23-37.
    4. Adam, Klaus & Marcet, Albert, 2011. "Internal rationality, imperfect market knowledge and asset prices," Journal of Economic Theory, Elsevier, vol. 146(3), pages 1224-1252, May.
    5. Assa, Hirbod & Zimper, Alexander, 2018. "Preferences over all random variables: Incompatibility of convexity and continuity," Journal of Mathematical Economics, Elsevier, vol. 75(C), pages 71-83.
    6. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    7. Yiqun Mou & Lars A. Lochstoer & Michael Johannes, 2011. "Learning about Consumption Dynamics," 2011 Meeting Papers 306, Society for Economic Dynamics.
    8. Yoon, Gawon, 2004. "On the existence of expected utility with CRRA under STUR," Economics Letters, Elsevier, vol. 83(2), pages 219-224, May.
    9. Bakshi, Gurdip & Skoulakis, Georgios, 2010. "Do subjective expectations explain asset pricing puzzles?," Journal of Financial Economics, Elsevier, vol. 98(3), pages 462-477, December.
    10. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    11. Augusto De La Torre & Alain Ize, 2010. "Regulatory Reform: Integrating Paradigms," International Finance, Wiley Blackwell, vol. 13(1), pages 109-139, March.
    12. Alexis Akira Toda & Kieran James Walsh, 2017. "Fat tails and spurious estimation of consumption‐based asset pricing models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1156-1177, September.
    13. Antonio Gargano & Davide Pettenuzzo & Allan Timmermann, 2019. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Management Science, INFORMS, vol. 65(2), pages 508-540, February.
    14. Shamsi Zamenjani, Azam, 2021. "Do financial variables help predict the conditional distribution of the market portfolio?," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 327-345.
    15. Suen, Richard M. H., 2009. "Bounding the CRRA Utility Functions," MPRA Paper 13260, University Library of Munich, Germany.
    16. M. Mercè Claramunt & Maite Mármol & Xavier Varea, 2023. "Facing a Risk: To Insure or Not to Insure—An Analysis with the Constant Relative Risk Aversion Utility Function," Mathematics, MDPI, vol. 11(5), pages 1-13, February.
    17. Chen, Yu & Cosimano, Thomas F. & Himonas, Alex A., 2008. "Analytic solving of asset pricing models: The by force of habit case," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3631-3660, November.
    18. Antony Millner, 2013. "On Welfare Frameworks and Catastrophic Climate Risks," CESifo Working Paper Series 4442, CESifo.
    19. Kame Babilla, Thierry, 2014. "Food Price Volatility implications for Trade and Monetary Policy between Nigeria and CEMAC: a Bayesian DSGE model approach," Conference papers 332525, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2007. "Learning, Structural Instability, and Present Value Calculations," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 253-288.

    More about this item

    JEL classification:

    • O12 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Microeconomic Analyses of Economic Development
    • D04 - Microeconomics - - General - - - Microeconomic Policy: Formulation; Implementation; Evaluation
    • D72 - Microeconomics - - Analysis of Collective Decision-Making - - - Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fdi:wpaper:466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Vincent Mazenod (email available below). General contact details of provider: https://edirc.repec.org/data/ferdifr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.