IDEAS home Printed from https://ideas.repec.org/p/fau/wpaper/wp2011_26.html
   My bibliography  Save this paper

The Extreme Value Theory as a Tool to Measure Market Risk

Author

Abstract

Assessing the extreme events is crucial in financial risk management. All risk managers and financial institutions want to know the risk of their portfolio under rare events scenarios. We illustrate a multivariate market risk estimating method which employs Monte Carlo simulations to estimate Value-at-Risk (VaR) for a portfolio of 4 stock exchange indexes from Central Europe. The method uses the non-parametric empirical distribution to capture small risks and the parametric Extreme Value theory to capture large and rare risks. We compare estimates of this method with historical simulation and variance-covariance method under low and high volatility samples of data. In general historical simulation method overestimates the VaR for extreme events, while variance-covariance underestimates it. The method that we illustrate gives a result in between because it considers historical performance of the stocks and also corrects for the heavy tails of the distribution. We conclude that the estimate method that we illustrate here is useful in estimating VaR for extreme events, especially for high volatility times.

Suggested Citation

  • Krenar Avdulaj, 2011. "The Extreme Value Theory as a Tool to Measure Market Risk," Working Papers IES 2011/26, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jul 2011.
  • Handle: RePEc:fau:wpaper:wp2011_26
    as

    Download full text from publisher

    File URL: http://ies.fsv.cuni.cz/default/file/download/id/17145
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David E. Giles & Qinlu Chen, 2014. "Risk Analysis for Three Precious Metals: An Application of Extreme Value Theory," Econometrics Working Papers 1402, Department of Economics, University of Victoria.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    2. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    3. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    4. Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Hedging of Derivatives Using Reinforcement Learning," Papers 2103.16409, arXiv.org.
    5. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    6. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    7. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    8. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    9. Boonen, Tim J. & Liu, Fangda, 2022. "Insurance with heterogeneous preferences," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    10. Arturo Cortés Aguilar, 2011. "Estimación del residual de un bono respaldado por hipotecas mediante un modelo de riesgo crédito: una comparación de resultados de la teoría de cópulas y el modelo IRB de Basilea II en datos del merca," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 5(1), pages 50-64.
    11. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    12. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    13. Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.
    14. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    15. Schumacher Johannes M., 2018. "Distortion risk measures, ROC curves, and distortion divergence," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 35-50, January.
    16. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    17. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    18. Li, Baibing, 2019. "Measuring travel time reliability and risk: A nonparametric approach," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 152-171.
    19. repec:hum:wpaper:sfb649dp2007-010 is not listed on IDEAS
    20. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    21. Qian Lin & Frank Riedel, 2021. "Optimal consumption and portfolio choice with ambiguous interest rates and volatility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1189-1202, April.

    More about this item

    Keywords

    Value-at-Risk; Extreme Value Theory; copula.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:wpaper:wp2011_26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalie Svarcova (email available below). General contact details of provider: https://edirc.repec.org/data/icunicz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.