IDEAS home Printed from https://ideas.repec.org/p/ewp/wpaper/473web.html
   My bibliography  Save this paper

The Partition Lattice Value for Global Cooperative Games

Author

Listed:
  • J.M. Alonso Meijide

    (Universidade de Santiago de Compostela)

  • M. Ã lvarez-Mozos

    (Universitat de Barcelona)

  • M.G. Fiestras-Janeiro

    (Universidade de Vigo)

  • A. Jiménez-Losada

    (Universidad de Sevilla)

Abstract

We introduce a new value for global cooperative games that we call the Partition lattice value. A global cooperative game describes the overall utility that a set of agents generates depending on how they are organized in coalitions without specifying what part of that utility is each coalition responsible for. Gilboa and Lehrer (1991) proposed a generalization of the Shapley value to this family of games that may imply a big loss of information. Here we take an alternative approach motivated by how the Shapley value distributes payoffs in unanimity games. More precisely, we consider that each link in the lattice of partitions represents a contribution and use them to define our value. The Partition lattice value is characterized by five properties. Three of them are also used in the characterization of the Gilboa-Lehrer value and another is weaker that the fourth and last property of their characterization. The last property of our result is new and describes how are payoffs distributed among the coalitions in global unanimity games.

Suggested Citation

  • J.M. Alonso Meijide & M. à lvarez-Mozos & M.G. Fiestras-Janeiro & A. Jiménez-Losada, 2024. "The Partition Lattice Value for Global Cooperative Games," UB School of Economics Working Papers 2024/473, University of Barcelona School of Economics.
  • Handle: RePEc:ewp:wpaper:473web
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/2445/215607
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    2. Grabisch, Michel & Funaki, Yukihiko, 2012. "A coalition formation value for games in partition function form," European Journal of Operational Research, Elsevier, vol. 221(1), pages 175-185.
    3. Michel Grabisch & Fabien Lange, 2007. "Games on lattices, multichoice games and the shapley value: a new approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 153-167, February.
    4. Geoffroy de Clippel & Roberto Serrano, 2008. "Marginal Contributions and Externalities in the Value," Econometrica, Econometric Society, vol. 76(6), pages 1413-1436, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Grabisch, 2011. "Ensuring the boundedness of the core of games with restricted cooperation," Annals of Operations Research, Springer, vol. 191(1), pages 137-154, November.
    2. Ander Perez-Orive & Andrea Caggese, 2017. "Capital Misallocation and Secular Stagnation," 2017 Meeting Papers 382, Society for Economic Dynamics.
    3. René Brink & Dinko Dimitrov & Agnieszka Rusinowska, 2021. "Winning coalitions in plurality voting democracies," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(3), pages 509-530, April.
    4. Sokolov, Denis, 2022. "Shapley value for TU-games with multiple memberships and externalities," Mathematical Social Sciences, Elsevier, vol. 119(C), pages 76-90.
    5. Bloch, Francis & van den Nouweland, Anne, 2014. "Expectation formation rules and the core of partition function games," Games and Economic Behavior, Elsevier, vol. 88(C), pages 339-353.
    6. Michel Grabisch & Lijue Xie, 2011. "The restricted core of games on distributive lattices: how to share benefits in a hierarchy," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 189-208, April.
    7. Michel Grabisch, 2010. "The lattice of embedded subsets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00457827, HAL.
    8. Oskar Skibski & Tomasz Michalak, 2020. "Fair division in the presence of externalities," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(1), pages 147-172, March.
    9. Andr'e Casajus & Yukihiko Funaki & Frank Huettner, 2024. "Random partitions, potential, value, and externalities," Papers 2402.00394, arXiv.org, revised Jun 2024.
    10. Saavedra–Nieves, Alejandro & Casas–Méndez, Balbina, 2023. "On the centrality analysis of covert networks using games with externalities," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1365-1378.
    11. Inés Macho-Stadler & David Pérez-Castrillo & David Wettstein, 2017. "Extensions of the Shapley value for Environments with Externalities," Working Papers 1002, Barcelona School of Economics.
    12. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, December.
    13. Julio Rodríguez-Segura & Joss Sánchez-Pérez, 2017. "An Extension of the Solidarity Value for Environments with Externalities," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-12, June.
    14. Stefan Ambec & Yann Kervinio, 2016. "Cooperative decision-making for the provision of a locally undesirable facility," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(1), pages 119-155, January.
    15. Ulrich Faigle & Michel Grabisch, 2012. "Values for Markovian coalition processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 51(3), pages 505-538, November.
    16. Michel Grabisch, 2016. "Remarkable polyhedra related to set functions, games and capacities," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 301-326, July.
    17. Mikel Alvarez-Mozos & José María Alonso-Meijide & María Gloria Fiestras-Janeiro, 2016. "The Shapley-Shubik Index in the Presence of Externalities," UB School of Economics Working Papers 2016/342, University of Barcelona School of Economics.
    18. Grabisch, Michel & Sudhölter, Peter, 2018. "On a class of vertices of the core," Games and Economic Behavior, Elsevier, vol. 108(C), pages 541-557.
    19. Grabisch, Michel & Sudhölter, Peter, 2014. "On the restricted cores and the bounded core of games on distributive lattices," European Journal of Operational Research, Elsevier, vol. 235(3), pages 709-717.
    20. Dutta, Bhaskar & Ehlers, Lars & Kar, Anirban, 2010. "Externalities, potential, value and consistency," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2380-2411, November.

    More about this item

    Keywords

    Global games; Shapley value; Contribution; Partition lattice;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ewp:wpaper:473web. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: University of Barcelona School of Economics (email available below). General contact details of provider: https://edirc.repec.org/data/feubaes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.