IDEAS home Printed from https://ideas.repec.org/p/eus/wpaper/ec2002_01.html
   My bibliography  Save this paper

A Simple Test for Unit Root Bilinearity

Author

Listed:
  • Wojciech Charemza
  • Mikhail Lifshits

    (St. Petersburg State University)

  • Svetlana Makarova

Abstract

The paper introduces a t-ratio type test for detecting bilinearity in a stochastic unit root process. It appears that such process is a realistic approximation for many economic and financial time series. It is shown that, under the null of no bilinearity, the tests statistics are asymptotically normally distributed. Proofs of this asymptotic normality requires the Gihman and Skorohod theory for multivariate diffusion processes. Finite sample results describe speed of convergence, power of the tests and possible distortions to unit root testing which might appear due to the presence of bilinearity. It is concluded that the two-step testing procedure suggested here (the first step for the linear unit root and the second step for its bilinearity) is consistent in the sense that the size of step one test is not affected by the possible detection of bilinearity at step two.

Suggested Citation

  • Wojciech Charemza & Mikhail Lifshits & Svetlana Makarova, 2002. "A Simple Test for Unit Root Bilinearity," EUSP Department of Economics Working Paper Series 2002/01, European University at St. Petersburg, Department of Economics, revised 29 Mar 2002.
  • Handle: RePEc:eus:wpaper:ec2002_01
    Note: Paper submitted to 57th Econometric Society European Meeting, February 2002, http://www.eea-esem.com/papers/eea-esem/esem2002/617/Bilinear.pdf
    as

    Download full text from publisher

    File URL: https://eusp.org/sites/default/files/archive/ec_dep/wp/ec-01_02.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peel, David & Davidson, James, 1998. "A non-linear error correction mechanism based on the bilinear model1," Economics Letters, Elsevier, vol. 58(2), pages 165-170, February.
    2. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    3. T. Grahn, 1995. "A Conditional Least Squares Approach To Bilinear Time Series Estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(5), pages 509-529, September.
    4. Ikeda, Shinsuke & Shibata, Akihisa, 1992. "Fundamentals-dependent bubbles in stock prices," Journal of Monetary Economics, Elsevier, vol. 30(1), pages 143-168, October.
    5. Granger, Clive W. J. & Swanson, Norman R., 1997. "An introduction to stochastic unit-root processes," Journal of Econometrics, Elsevier, vol. 80(1), pages 35-62, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charemza, Wojciech W. & Lifshits, Mikhail & Makarova, Svetlana, 2005. "Conditional testing for unit-root bilinearity in financial time series: some theoretical and empirical results," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 63-96, January.
    2. Robert F. Engle & Aaron D. Smith, 1999. "Stochastic Permanent Breaks," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 553-574, November.
    3. Wojciech Charemza & Mikhail Lifshits & Svetlana Makarova, 2002. "A Simple Test for Unit Root Bilinearity," EUSP Department of Economics Working Paper Series Ec-01/02, European University at St. Petersburg, Department of Economics, revised 29 Mar 2002.
    4. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    5. Biqing Cai & Jiti Gao & Dag Tjøstheim, 2017. "A New Class of Bivariate Threshold Cointegration Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 288-305, April.
    6. Hartwell, Christopher A., 2014. "The impact of institutional volatility on financial volatility in transition economies : a GARCH family approach," BOFIT Discussion Papers 6/2014, Bank of Finland, Institute for Economies in Transition.
    7. Offer Lieberman & Peter C. B. Phillips, 2014. "Norming Rates And Limit Theory For Some Time-Varying Coefficient Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 592-623, November.
    8. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
    9. Michelacci, Claudio & Zaffaroni, Paolo, 2000. "(Fractional) beta convergence," Journal of Monetary Economics, Elsevier, vol. 45(1), pages 129-153, February.
    10. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    11. Pierre Perron & Yohei Yamamoto, 2022. "Structural change tests under heteroskedasticity: Joint estimation versus two‐steps methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 389-411, May.
    12. Hendrik Thiel & Stephan L. Thomsen, 2015. "Individual Poverty Paths and the Stability of Control-Perception," SOEPpapers on Multidisciplinary Panel Data Research 794, DIW Berlin, The German Socio-Economic Panel (SOEP).
    13. Brüggemann, Ralf & Jentsch, Carsten & Trenkler, Carsten, 2016. "Inference in VARs with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 191(1), pages 69-85.
    14. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    15. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    16. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
    17. Lee, Yoon-Jin & Okui, Ryo & Shintani, Mototsugu, 2018. "Asymptotic inference for dynamic panel estimators of infinite order autoregressive processes," Journal of Econometrics, Elsevier, vol. 204(2), pages 147-158.
    18. Davidson James & Rambaccussing Dooruj, 2015. "A Test of the Long Memory Hypothesis Based on Self-Similarity," Journal of Time Series Econometrics, De Gruyter, vol. 7(2), pages 115-141, July.
    19. Goldman Elena & Tsurumi Hiroki, 2005. "Bayesian Analysis of a Doubly Truncated ARMA-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-38, June.
    20. Chihwa Kao & Lorenzo Trapani & Giovanni Urga, 2012. "Testing for Instability in Covariance Structures," Center for Policy Research Working Papers 131, Center for Policy Research, Maxwell School, Syracuse University.

    More about this item

    Keywords

    time-series econometrics; testing; nonstationary bilinear processes;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eus:wpaper:ec2002_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mikhail Pakhnin (email available below). General contact details of provider: https://edirc.repec.org/data/feeusru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.