IDEAS home Printed from https://ideas.repec.org/p/eui/euiwps/eco2001-01.html
   My bibliography  Save this paper

The Asymptotic Variance of the Estimated Roots in a Cointegrated Vector Autoregressive Model

Author

Listed:
  • Soren JOHANSEN

Abstract

. We show that the asymptotic distribution of the estimated stationary roots in a vector autoregressive model is Gaussian. A simple expression for the asymptotic variance in terms of the roots and the eigenvectors of the companion matrix is derived. The results are extended to the cointegrated vector autoregressive model and we discuss the implementation of the results for complex roots.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Soren JOHANSEN, 2001. "The Asymptotic Variance of the Estimated Roots in a Cointegrated Vector Autoregressive Model," Economics Working Papers ECO2001/01, European University Institute.
  • Handle: RePEc:eui:euiwps:eco2001/01
    as

    Download full text from publisher

    File URL: http://www.iue.it/PUB/ECO2001-1.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Johansen, Soren & Schaumburg, Ernst, 1998. "Likelihood analysis of seasonal cointegration," Journal of Econometrics, Elsevier, vol. 88(2), pages 301-339, November.
    2. Wymer, C R, 1972. "Econometric Estimation of Stochastic Differential Equation Systems," Econometrica, Econometric Society, vol. 40(3), pages 565-577, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mauricio, Jose Alberto, 2006. "Exact maximum likelihood estimation of partially nonstationary vector ARMA models," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3644-3662, August.
    2. Onatski, Alexei & Uhlig, Harald, 2012. "Unit Roots In White Noise," Econometric Theory, Cambridge University Press, vol. 28(3), pages 485-508, June.
    3. Alain Hecq & Franz Palm & Jean-Pierre Urbain, 2002. "Separation, Weak Exogeneity, And P-T Decomposition In Cointegrated Var Systems With Common Features," Econometric Reviews, Taylor & Francis Journals, vol. 21(3), pages 273-307.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beenstock, Michael & Reingewertz, Yaniv & Paldor, Nathan, 2016. "Testing the historic tracking of climate models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1234-1246.
    2. Lof, Marten & Lyhagen, Johan, 2002. "Forecasting performance of seasonal cointegration models," International Journal of Forecasting, Elsevier, vol. 18(1), pages 31-44.
    3. Lof, Marten & Hans Franses, Philip, 2001. "On forecasting cointegrated seasonal time series," International Journal of Forecasting, Elsevier, vol. 17(4), pages 607-621.
    4. Philip Hans Franses & Robert M. Kunst, 1999. "On the Role of Seasonal Intercepts in Seasonal Cointegration," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(3), pages 409-433, August.
    5. Barhoumi, Karim, 2006. "Differences in long run exchange rate pass-through into import prices in developing countries: An empirical investigation," Economic Modelling, Elsevier, vol. 23(6), pages 926-951, December.
    6. Massimo Franchi & Paolo Paruolo, 2019. "A general inversion theorem for cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 38(10), pages 1176-1201, November.
    7. Pami Dua & Lokendra Kumawat, 2005. "Modelling and Forecasting Seasonality in Indian Macroeconomic Time Series," Working papers 136, Centre for Development Economics, Delhi School of Economics.
    8. Gianluca Cubadda, 2001. "Common Features In Time Series With Both Deterministic And Stochastic Seasonality," Econometric Reviews, Taylor & Francis Journals, vol. 20(2), pages 201-216.
    9. Marco Centoni & Gianluca Cubadda, 2011. "Modelling comovements of economic time series: a selective survey," Statistica, Department of Statistics, University of Bologna, vol. 71(2), pages 267-294.
    10. Panayiotis Diamantis & Dimitris Georgoutsos & George Kouretas, 2001. "The Monetary Approach in the Presence of I(2) Components: A Cointegration Analysis of the Official and Black Market for Foreign Currency in Latin America," Working Papers 0108, University of Crete, Department of Economics.
    11. Massimo Franchi & Paolo Paruolo, 2021. "Cointegration, Root Functions and Minimal Bases," Econometrics, MDPI, vol. 9(3), pages 1-27, August.
    12. Vos, A.F. & Steyn, I.J., 1990. "Stochastic nonlinearity : a firm basis for the flexible functional form," Serie Research Memoranda 0013, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    13. Mårten Löf & Johan Lyhagen, 2003. "On seasonal error correction when the processes include different numbers of unit roots," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 377-389.
    14. Svend Hylleberg, 2006. "Seasonal Adjustment," Economics Working Papers 2006-04, Department of Economics and Business Economics, Aarhus University.
    15. Belloc, Marianna & Federici, Daniela, 2010. "A two-country NATREX model for the euro/dollar," Journal of International Money and Finance, Elsevier, vol. 29(2), pages 315-335, March.
    16. Dietmar Bauer & Martin Wagner, 2002. "Asymptotic Properties of Pseudo Maximum Likelihood Estimates for Multiple Frequency I(1) Processes," Diskussionsschriften dp0205, Universitaet Bern, Departement Volkswirtschaft.
    17. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    18. del Barrio Castro, Tomás, 2021. "Testing for the cointegration rank between Periodically Integrated processes," MPRA Paper 106603, University Library of Munich, Germany, revised 2021.
    19. Dietmar Bauer & Martin Wagner, 2002. "A Canonical Form for Unit Root Processes in the State Space Framework," Diskussionsschriften dp0204, Universitaet Bern, Departement Volkswirtschaft.
    20. Kieran Donaghy & Clifford R. Wymer & Geoffrey J. D. Hewings & Soo Jung Ha, 2017. "Structural change in the Chicago region and the impact on emission inventories in a continuous-time modeling approach," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-28, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eui:euiwps:eco2001/01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cécile Brière (email available below). General contact details of provider: https://edirc.repec.org/data/deiueit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.