IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/1093.html
   My bibliography  Save this paper

Forecasting the international diffusion of innovations: An adaptive estimation approach

Author

Listed:
  • van Everdingen, Y.M.
  • Aghina, W.B.

Abstract

We introduce an international, adaptive diffusion model that can be used to forecast the cross-national diffusion of an innovation at early stages of the diffusion curve. We model the mutual influence between the diffusion processes in the different social systems (countries) by mixing behaviour. Furthermore, we apply the matching procedure as proposed by Dekimpe, Parker and Sarvary (1998). This international diffusion model is adaptively estimated using an augmented Kalman Filter with Continuous States and Discrete observations, developed by Xie, Song, Sirbu and Wang (1997). This is the first application of this procedure in an international context. We empirically applied this method to the diffusion of Internet access at home, and mobile telephony among households in the 15 countries of the European Union. The results show that our international, adaptive model performs well and is by far superior when compared to the classical method of estimating diffusion models for each country separately.

Suggested Citation

  • van Everdingen, Y.M. & Aghina, W.B., 2003. "Forecasting the international diffusion of innovations: An adaptive estimation approach," ERIM Report Series Research in Management ERS-2003-073-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:1093
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1093/ERS%202003%20073%20MKT.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. V. Kumar & Trichy V. Krishnan, 2002. "Multinational Diffusion Models: An Alternative Framework," Marketing Science, INFORMS, vol. 21(3), pages 318-330, July.
    2. Ramya Neelamegham & Pradeep Chintagunta, 1999. "A Bayesian Model to Forecast New Product Performance in Domestic and International Markets," Marketing Science, INFORMS, vol. 18(2), pages 115-136.
    3. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    4. Debabrata Talukdar & K. Sudhir & Andrew Ainslie, 2002. "Investigating New Product Diffusion Across Products and Countries," Marketing Science, INFORMS, vol. 21(1), pages 97-114, February.
    5. Christophe Van den Bulte & Gary L. Lilien, 1997. "Bias and Systematic Change in the Parameter Estimates of Macro-Level Diffusion Models," Marketing Science, INFORMS, vol. 16(4), pages 338-353.
    6. Peter J. Lenk & Ambar G. Rao, 1990. "New Models from Old: Forecasting Product Adoption by Hierarchical Bayes Procedures," Marketing Science, INFORMS, vol. 9(1), pages 42-53.
    7. Gerard J. Tellis & Stefan Stremersch & Eden Yin, 2003. "The International Takeoff of New Products: The Role of Economics, Culture, and Country Innovativeness," Marketing Science, INFORMS, vol. 22(2), pages 188-208, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    2. Desiraju, Ramarao & Nair, Harikesh S. & Chintagunta, Pradeep, 2004. "Diffusion of New Pharmaceutical Drugs in Developing and Developed Nations," Research Papers 1950, Stanford University, Graduate School of Business.
    3. Rajkumar Venkatesan & Trichy V. Krishnan & V. Kumar, 2004. "Evolutionary Estimation of Macro-Level Diffusion Models Using Genetic Algorithms: An Alternative to Nonlinear Least Squares," Marketing Science, INFORMS, vol. 23(3), pages 451-464, August.
    4. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    5. Fok, Dennis & Franses, Philip Hans, 2007. "Modeling the diffusion of scientific publications," Journal of Econometrics, Elsevier, vol. 139(2), pages 376-390, August.
    6. Franses, Ph.H.B.F., 2009. "Forecasting Sales," Econometric Institute Research Papers EI 2009-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Debabrata Talukdar & K. Sudhir & Andrew Ainslie, 2002. "Investigating New Product Diffusion Across Products and Countries," Marketing Science, INFORMS, vol. 21(1), pages 97-114, February.
    8. Gelper, Sarah & Stremersch, Stefan, 2014. "Variable selection in international diffusion models," International Journal of Research in Marketing, Elsevier, vol. 31(4), pages 356-367.
    9. Venkatesan, Rajkumar & Kumar, V., 2002. "A genetic algorithms approach to growth phase forecasting of wireless subscribers," International Journal of Forecasting, Elsevier, vol. 18(4), pages 625-646.
    10. Paulo Albuquerque & Bart J. Bronnenberg & Charles J. Corbett, 2007. "A Spatiotemporal Analysis of the Global Diffusion of ISO 9000 and ISO 14000 Certification," Management Science, INFORMS, vol. 53(3), pages 451-468, March.
    11. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
    12. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    13. Christophe Van den Bulte & Stefan Stremersch, 2004. "Social Contagion and Income Heterogeneity in New Product Diffusion: A Meta-Analytic Test," Marketing Science, INFORMS, vol. 23(4), pages 530-544, July.
    14. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    15. Jonathan Lee & Peter Boatwright & Wagner A. Kamakura, 2003. "A Bayesian Model for Prelaunch Sales Forecasting of Recorded Music," Management Science, INFORMS, vol. 49(2), pages 179-196, February.
    16. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    17. Phillip M. Yelland & Shinji Kim & Renée Stratulate, 2010. "A Bayesian Model for Sales Forecasting at Sun Microsystems," Interfaces, INFORMS, vol. 40(2), pages 118-129, April.
    18. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    19. Haris Krijestorac & Rajiv Garg & Vijay Mahajan, 2020. "Cross-Platform Spillover Effects in Consumption of Viral Content: A Quasi-Experimental Analysis Using Synthetic Controls," Information Systems Research, INFORMS, vol. 31(2), pages 449-472, June.
    20. Christos Michalakelis & Georgia Dede & Dimitris Varoutas & Thomas Sphicopoulos, 2010. "Estimating diffusion and price elasticity with application to telecommunications," Netnomics, Springer, vol. 11(3), pages 221-242, October.

    More about this item

    Keywords

    bayesian estimation; cross-country diffusion; forecasting; international marketing;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O57 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Comparative Studies of Countries

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:1093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.