IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/97802.html
   My bibliography  Save this paper

A branch-and-cut algorithm for the Time Window Assignment Vehicle Routing Problem

Author

Listed:
  • Dalmeijer, K.
  • Spliet, R.

Abstract

This paper presents a branch-and-cut algorithm for the Time Window Assignment Vehicle Routing Problem (TWAVRP), the problem of assigning time windows for delivery before demand volume becomes known. A novel set of valid inequalities, the precedence inequalities, is introduced and multiple separation heuristics are presented. In our numerical experiments the branch-and-cut algorithm is 3.8 times faster when separating precedence inequalities. Furthermore, in our experiments, the branch-and-cut algorithm is 193.9 times faster than the best known algorithm in the literature. Finally, using our algorithm, instances of the TWAVRP are solved which are larger than the small scale instances previously presented in the literature.

Suggested Citation

  • Dalmeijer, K. & Spliet, R., 2016. "A branch-and-cut algorithm for the Time Window Assignment Vehicle Routing Problem," Econometric Institute Research Papers EI2016-39, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:97802
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/97802/EI2016-39.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guy Desaulniers & François Lessard & Ahmed Hadjar, 2008. "Tabu Search, Partial Elementarity, and Generalized k -Path Inequalities for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 42(3), pages 387-404, August.
    2. Spliet, Remy & Desaulniers, Guy, 2015. "The discrete time window assignment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 244(2), pages 379-391.
    3. R. Baldacci & E. Hadjiconstantinou & A. Mingozzi, 2004. "An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation," Operations Research, INFORMS, vol. 52(5), pages 723-738, October.
    4. Gilbert Laporte & Yves Nobert & Martin Desrochers, 1985. "Optimal Routing under Capacity and Distance Restrictions," Operations Research, INFORMS, vol. 33(5), pages 1050-1073, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baldacci, Roberto & Mingozzi, Aristide & Roberti, Roberto, 2012. "Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints," European Journal of Operational Research, Elsevier, vol. 218(1), pages 1-6.
    2. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    3. Hà, Minh Hoàng & Bostel, Nathalie & Langevin, André & Rousseau, Louis-Martin, 2013. "An exact algorithm and a metaheuristic for the multi-vehicle covering tour problem with a constraint on the number of vertices," European Journal of Operational Research, Elsevier, vol. 226(2), pages 211-220.
    4. Gilbert Laporte, 2007. "What you should know about the vehicle routing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(8), pages 811-819, December.
    5. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    6. Roberto Baldacci & Paolo Toth & Daniele Vigo, 2010. "Exact algorithms for routing problems under vehicle capacity constraints," Annals of Operations Research, Springer, vol. 175(1), pages 213-245, March.
    7. Guy Desaulniers, 2010. "Branch-and-Price-and-Cut for the Split-Delivery Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 58(1), pages 179-192, February.
    8. Hoogendoorn, Y.N. & Dalmeijer, K., 2021. "Resource-robust valid inequalities for set covering and set partitioning models," Econometric Institute Research Papers EI 2020-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    9. Luo, Zhixing & Qin, Hu & Lim, Andrew, 2014. "Branch-and-price-and-cut for the multiple traveling repairman problem with distance constraints," European Journal of Operational Research, Elsevier, vol. 234(1), pages 49-60.
    10. Camm, Jeffrey D. & Magazine, Michael J. & Kuppusamy, Saravanan & Martin, Kipp, 2017. "The demand weighted vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 262(1), pages 151-162.
    11. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2011. "New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1269-1283, October.
    12. Chrysanthos E. Gounaris & Wolfram Wiesemann & Christodoulos A. Floudas, 2013. "The Robust Capacitated Vehicle Routing Problem Under Demand Uncertainty," Operations Research, INFORMS, vol. 61(3), pages 677-693, June.
    13. Leggieri, Valeria & Haouari, Mohamed, 2017. "Lifted polynomial size formulations for the homogeneous and heterogeneous vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 263(3), pages 755-767.
    14. Martins, Sara & Ostermeier, Manuel & Amorim, Pedro & Hübner, Alexander & Almada-Lobo, Bernardo, 2019. "Product-oriented time window assignment for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 893-909.
    15. Gutiérrez-Jarpa, Gabriel & Desaulniers, Guy & Laporte, Gilbert & Marianov, Vladimir, 2010. "A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows," European Journal of Operational Research, Elsevier, vol. 206(2), pages 341-349, October.
    16. Bode, Claudia & Irnich, Stefan, 2014. "The shortest-path problem with resource constraints with (k,2)-loop elimination and its application to the capacitated arc-routing problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 415-426.
    17. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    18. Fleming, Christopher L. & Griffis, Stanley E. & Bell, John E., 2013. "The effects of triangle inequality on the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 224(1), pages 1-7.
    19. R. Baldacci & E. Hadjiconstantinou & A. Mingozzi, 2004. "An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation," Operations Research, INFORMS, vol. 52(5), pages 723-738, October.
    20. Roberto Baldacci & Enrico Bartolini & Aristide Mingozzi & Andrea Valletta, 2011. "An Exact Algorithm for the Period Routing Problem," Operations Research, INFORMS, vol. 59(1), pages 228-241, February.

    More about this item

    Keywords

    Vehicle Routing; Time Window Assignment; Precedence Inequalities; 90B06 (Transportation); 90C11 (Mixed integer programming); 90C57 (Branch-and-cut);
    All these keywords.

    JEL classification:

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:97802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.