IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/9412.html
   My bibliography  Save this paper

Application of a general risk management model to portfolio optimization problems with elliptical distributed returns for risk neutral and risk averse decision makers

Author

Listed:
  • Kaynar, B.
  • Birbil, S.I.
  • Frenk, J.B.G.

Abstract

We discuss a class of risk measures for portfolio optimization with linear loss functions, where the random returns of financial instruments have a multivariate elliptical distribution. Under this setting we pay special attention to two risk measures, Value-at-Risk and Conditional-Value-at-Risk and differentiate between risk neutral and risk averse decision makers. When the so-called disutility function is taken as the identity function, the optimization problem is solved for a risk neutral investor. In this case, the optimal solutions of the two portfolio problems using the Value-at-Risk and Conditional-Value-at-Risk measures are the same as the solution of the classical Markowitz model. We adapt an existing less known finite algorithm to solve the Markowitz model. Its application within finance seems to be new and outperforms the standard quadratic programming procedure quadprog within MATLAB. When the disutility function is taken as a convex increasing function, the problem at hand is associated with a risk averse investor. If the Value-at-Risk is the choice of measure we show that the optimal solution does not differ from the risk neutral case. However, when Conditional-Value-at-Risk is preferred for the risk averse decision maker, the corresponding portfolio problem has a different optimal solution. In this case the used objective function can be easily approximated by Monte Carlo simulation. For the actual solution of the Markowitz model, we modify and implement the less known finite step algorithm and explain its core idea. After that we present numerical results to illustrate the effects of two disutility functions as well as to examine the convergence behavior of the Monte Carlo estimation approach.

Suggested Citation

  • Kaynar, B. & Birbil, S.I. & Frenk, J.B.G., 2007. "Application of a general risk management model to portfolio optimization problems with elliptical distributed returns for risk neutral and risk averse decision makers," Econometric Institute Research Papers EI 2007-12, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:9412
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/9412/ei2007-12.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krajina, A., 2009. "A Method of Moments Estimator of Tail Dependence in Elliptical Copula Models," Discussion Paper 2009-42, Tilburg University, Center for Economic Research.
    2. Jamie Fairbrother & Amanda Turner & Stein W. Wallace, 2018. "Scenario Generation for Single-Period Portfolio Selection Problems with Tail Risk Measures: Coping with High Dimensions and Integer Variables," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 472-491, August.
    3. Krajina, A., 2010. "An M-estimator of multivariate tail dependence," Other publications TiSEM 66518e07-db9a-4446-81be-c, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    2. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    3. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    4. Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Hedging of Derivatives Using Reinforcement Learning," Papers 2103.16409, arXiv.org.
    5. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    6. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    7. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    8. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    9. Boonen, Tim J. & Liu, Fangda, 2022. "Insurance with heterogeneous preferences," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    10. Arturo Cortés Aguilar, 2011. "Estimación del residual de un bono respaldado por hipotecas mediante un modelo de riesgo crédito: una comparación de resultados de la teoría de cópulas y el modelo IRB de Basilea II en datos del merca," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 5(1), pages 50-64.
    11. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    12. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    13. Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.
    14. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    15. Schumacher Johannes M., 2018. "Distortion risk measures, ROC curves, and distortion divergence," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 35-50, January.
    16. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    17. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    18. Li, Baibing, 2019. "Measuring travel time reliability and risk: A nonparametric approach," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 152-171.
    19. repec:hum:wpaper:sfb649dp2007-010 is not listed on IDEAS
    20. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    21. Qian Lin & Frank Riedel, 2021. "Optimal consumption and portfolio choice with ambiguous interest rates and volatility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1189-1202, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:9412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.