IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/560.html
   My bibliography  Save this paper

Ecological panel inference in repeated cross sections

Author

Listed:
  • Pelzer, B.
  • Eisinga, R.
  • Franses, Ph.H.B.F.

Abstract

This paper presents a Markov chain model for the estimation of individual-level binary transitions from a time series of independent repeated cross-sectional (RCS) samples. Although RCS samples lack direct information on individual turnover, it is demonstrated here that it is possible with these data to draw meaningful conclusions on individual state-to-state transitions. We discuss estimation and inference using maximum likelihood, parametric bootstrap and Markov chain Monte Carlo approaches. The model is illustrated by an application to the rise in ownership of computers in Dutch households since 1986, using a 13-wave annual panel data set. These data encompass more information than we need to estimate the model, but this additional information allows us to assess the validity of the parameter estimates. We examine the determinants of the transitions from 'have-not' to 'have' (and back again) using well-known socio-economic and demographic covariates of the digital divide. Parametric bootstrap and Bayesian simulation are used to evaluate the accuracy and the precision of the ML estimates and the results are also compared with those of a first-order dynamic panel model. To mimic genuine repeated cross-sectional data, we additionally analyse samples of independent observations randomly drawn from the panel. Software implementing the model is available.

Suggested Citation

  • Pelzer, B. & Eisinga, R. & Franses, Ph.H.B.F., 2002. "Ecological panel inference in repeated cross sections," Econometric Institute Research Papers EI 2002-22, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:560
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/560/feweco20020816135219.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oecd, 2001. "Understanding the Digital Divide," OECD Digital Economy Papers 49, OECD Publishing.
    2. Pelzer, Ben & Eisinga, Rob & Franses, Philip Hans, 2002. "Inferring Transition Probabilities from Repeated Cross Sections," Political Analysis, Cambridge University Press, vol. 10(2), pages 113-133, April.
    3. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    4. Gary King & Ori Rosen & Martin A. Tanner, 1999. "Binomial-Beta Hierarchical Models for Ecological Inference," Sociological Methods & Research, , vol. 28(1), pages 61-90, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juncal Cunado & David Gabauer & Rangan Gupta, 2024. "Realized volatility spillovers between energy and metal markets: a time-varying connectedness approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-17, December.
    2. Elie Bouri & Georges Azzi, 2014. "On the Dynamic Transmission of Mean and Volatility across the Arab Stock Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 13(3), pages 279-304, December.
    3. Eric Fur, 2023. "Risk and return of classic car market prices: passion or financial investment?," Journal of Asset Management, Palgrave Macmillan, vol. 24(1), pages 59-68, February.
    4. Georgiev, Iliyan, 2010. "Model-based asymptotic inference on the effect of infrequent large shocks on cointegrated variables," Journal of Econometrics, Elsevier, vol. 158(1), pages 37-50, September.
    5. Jin, Xiaoye, 2015. "Volatility transmission and volatility impulse response functions among the Greater China stock markets," Journal of Asian Economics, Elsevier, vol. 39(C), pages 43-58.
    6. Lenten, Liam J.A. & Geerling, Wayne & Kónya, László, 2012. "A hedonic model of player wage determination from the Indian Premier League auction: Further evidence," Sport Management Review, Elsevier, vol. 15(1), pages 60-71.
    7. Olimpia NEAGU, 2019. "Digital Divide Gap Convergence Across European Union: The Role Of Urbanisation," Contemporary Economy Journal, Constantin Brancoveanu University, vol. 4(1), pages 43-48.
    8. Akos Jakobi, 2013. "Space and virtuality: new characteristics of inequalities in the information society and economy," Review of Applied Socio-Economic Research, Pro Global Science Association, vol. 5(1), pages 4-14, June.
    9. Martha Misas A. & Carlos Esteban Posada P & Diego Mauricio Vásquez E, 2003. "¿Está determinado el nivel de precios por las expectativas de dinero y producto en Colombia?," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 21(43), pages 8-31, June.
    10. Bouri, Elie & Gabauer, David & Gupta, Rangan & Tiwari, Aviral Kumar, 2021. "Volatility connectedness of major cryptocurrencies: The role of investor happiness," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    11. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    12. Le, Trung H. & Pham, Linh & Do, Hung X., 2023. "Price risk transmissions in the water-energy-food nexus: Impacts of climate risks and portfolio implications," Energy Economics, Elsevier, vol. 124(C).
    13. Cagli, Efe Caglar, 2023. "The volatility spillover between battery metals and future mobility stocks: Evidence from the time-varying frequency connectedness approach," Resources Policy, Elsevier, vol. 86(PA).
    14. Mendoza-Lozano, Frederick Andrés & Quintero-Peña, Jose Wilmar & García-Rodríguez, Jose Felix, 2021. "The digital divide between high school students in Colombia," Telecommunications Policy, Elsevier, vol. 45(10).
    15. David Brasington & Don Haurin, 2005. "Capitalization of Parent, School, and Peer Group Components of School Quality into House Price," Departmental Working Papers 2005-04, Department of Economics, Louisiana State University.
    16. Pao, Hsiao-Tien & Fu, Hsin-Chia, 2013. "The causal relationship between energy resources and economic growth in Brazil," Energy Policy, Elsevier, vol. 61(C), pages 793-801.
    17. Ron Bird & Harry Liem & Susan Thorp, 2012. "The Tortoise and the Hare: Risk Premium Versus Alternative Asset Portfolios," Working Paper Series 16, The Paul Woolley Centre for Capital Market Dysfunctionality, University of Technology, Sydney.
    18. Jiang, Yanhui & Qu, Bo & Hong, Yun & Xiao, Xiyue, 2024. "Dynamic connectedness of inflation around the world: A time-varying approach from G7 and E7 countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 111-125.
    19. Ventura, Eva & Satorra, Albert, 2015. "A multiple indicator model for panel data: an application to ICT area-level variation," 26th European Regional ITS Conference, Madrid 2015 127191, International Telecommunications Society (ITS).
    20. Dimitrios Kartsonakis Mademlis & Nikolaos Dritsakis, 2021. "Volatility Forecasting using Hybrid GARCH Neural Network Models: The Case of the Italian Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 11(1), pages 49-60.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.