IDEAS home Printed from https://ideas.repec.org/a/cup/polals/v10y2002i02p113-133_00.html
   My bibliography  Save this article

Inferring Transition Probabilities from Repeated Cross Sections

Author

Listed:
  • Pelzer, Ben
  • Eisinga, Rob
  • Franses, Philip Hans

Abstract

This paper discusses a nonstationary, heterogeneous Markov model designed to estimate entry and exit transition probabilities at the micro level from a time series of independent cross-sectional samples with a binary outcome variable. The model has its origins in the work of Moffitt and shares features with standard statistical methods for ecological inference. We outline the methodological framework proposed by Moffitt and present several extensions of the model to increase its potential application in a wider array of research contexts. We also discuss the relationship with previous lines of related research in political science. The example illustration uses survey data on American presidential vote intentions from a five-wave panel study conducted by Patterson in 1976. We treat the panel data as independent cross sections and compare the estimates of the Markov model with both dynamic panel parameter estimates and the actual observations in the panel. The results suggest that the proposed model provides a useful framework for the analysis of transitions in repeated cross sections. Open problems requiring further study are discussed.

Suggested Citation

  • Pelzer, Ben & Eisinga, Rob & Franses, Philip Hans, 2002. "Inferring Transition Probabilities from Repeated Cross Sections," Political Analysis, Cambridge University Press, vol. 10(2), pages 113-133, April.
  • Handle: RePEc:cup:polals:v:10:y:2002:i:02:p:113-133_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S104719870000992X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William Lim & Gaurav Khemka & David Pitt & Bridget Browne, 2019. "A method for calculating the implied no-recovery three-state transition matrix using observable population mortality incidence and disability prevalence rates among the elderly," Journal of Population Research, Springer, vol. 36(3), pages 245-282, September.
    2. Pelzer, B. & Eisinga, R. & Franses, Ph.H.B.F., 2002. "Ecological panel inference in repeated cross sections," Econometric Institute Research Papers EI 2002-22, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:10:y:2002:i:02:p:113-133_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.