IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1566.html
   My bibliography  Save this paper

LQ control without Ricatti equations: deterministic systems

Author

Listed:
  • Yao, D.D.
  • Zhang, S.
  • Zhou, X.Y.

Abstract

We study a deterministic linear-quadratic (LQ) control problem over an infinite horizon, and develop a general apprach to the problem based on semi-definite programming (SDP)and related duality analysis. This approach allows the control cost matrix R to be non-negative (semi-definite), a case that is beyond the scope of the classical approach based on Riccati equations. We show that the complementary duality condition of the SDP is necessary and sufficient for the existence of an optimal LQ control. Moreover, when the complementary duality does hold, an optimal state feedback control is constructed explicitly in terms of the solution to the semidefinite program. On the other hand, when the complementary duality fails, the LQ problem has no attainable optimal solution, and we develop an E-approximation scheme that achieves asymptotic optimality.

Suggested Citation

  • Yao, D.D. & Zhang, S. & Zhou, X.Y., 1999. "LQ control without Ricatti equations: deterministic systems," Econometric Institute Research Papers EI 9913-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1566
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1566/1566.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1997. "Duality Results for Conic Convex Programming," Econometric Institute Research Papers EI 9719/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1998. "Conic convex programming and self-dual embedding," Econometric Institute Research Papers EI 9815, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    2. Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1998. "Conic convex programming and self-dual embedding," Econometric Institute Research Papers EI 9815, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Kenneth O. Kortanek & Guolin Yu & Qinghong Zhang, 2021. "Strong duality for standard convex programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 413-436, December.
    4. J.F. Sturm & S. Zhang, 1998. "On Sensitivity of Central Solutions in Semidefinite Programming," Tinbergen Institute Discussion Papers 98-040/4, Tinbergen Institute.
    5. Hayato Waki & Masakazu Muramatsu, 2013. "Facial Reduction Algorithms for Conic Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 188-215, July.
    6. O. I. Kostyukova & T. V. Tchemisova, 2022. "On strong duality in linear copositive programming," Journal of Global Optimization, Springer, vol. 83(3), pages 457-480, July.
    7. Zhi-Quan Luo & Shuzhong Zhang, 1997. "On the extensions of Frank-Wolfe theorem," Tinbergen Institute Discussion Papers 97-122/4, Tinbergen Institute.
    8. Zhang, S., 1998. "Global error bounds for convex conic problems," Econometric Institute Research Papers EI 9830, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    9. Brinkhuis, J. & Zhang, S., 2003. "A D-induced duality and its applications," Econometric Institute Research Papers EI 2003-42, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.