IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v158y2013i1d10.1007_s10957-012-0219-y.html
   My bibliography  Save this article

Facial Reduction Algorithms for Conic Optimization Problems

Author

Listed:
  • Hayato Waki

    (Kyushu University)

  • Masakazu Muramatsu

    (The University of Electro-Communications)

Abstract

In the conic optimization problems, it is well-known that a positive duality gap may occur, and that solving such a problem is numerically difficult or unstable. For such a case, we propose a facial reduction algorithm to find a primal–dual pair of conic optimization problems having the zero duality gap and the optimal value equal to one of the original primal or dual problems. The conic expansion approach is also known as a method to find such a primal–dual pair, and in this paper we clarify the relationship between our facial reduction algorithm and the conic expansion approach. Our analysis shows that, although they can be regarded as dual to each other, our facial reduction algorithm has ability to produce a finer sequence of faces of the cone including the feasible region. A simple proof of the convergence of our facial reduction algorithm for the conic optimization is presented. We also observe that our facial reduction algorithm has a practical impact by showing numerical experiments for graph partition problems; our facial reduction algorithm in fact enhances the numerical stability in those problems.

Suggested Citation

  • Hayato Waki & Masakazu Muramatsu, 2013. "Facial Reduction Algorithms for Conic Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 188-215, July.
  • Handle: RePEc:spr:joptap:v:158:y:2013:i:1:d:10.1007_s10957-012-0219-y
    DOI: 10.1007/s10957-012-0219-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0219-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0219-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1997. "Duality Results for Conic Convex Programming," Econometric Institute Research Papers EI 9719/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuzhu Wang & Akihiro Tanaka & Akiko Yoshise, 2021. "Polyhedral approximations of the semidefinite cone and their application," Computational Optimization and Applications, Springer, vol. 78(3), pages 893-913, April.
    2. Yoshiyuki Sekiguchi & Hayato Waki, 2021. "Perturbation Analysis of Singular Semidefinite Programs and Its Applications to Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 52-72, January.
    3. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    2. Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1998. "Conic convex programming and self-dual embedding," Econometric Institute Research Papers EI 9815, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Kenneth O. Kortanek & Guolin Yu & Qinghong Zhang, 2021. "Strong duality for standard convex programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 413-436, December.
    4. Zhang, S., 1998. "Global error bounds for convex conic problems," Econometric Institute Research Papers EI 9830, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Yao, D.D. & Zhang, S. & Zhou, X.Y., 1999. "LQ control without Ricatti equations: deterministic systems," Econometric Institute Research Papers EI 9913-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Qinghong Zhang, 2024. "Understanding Badly and Well-Behaved Linear Matrix Inequalities Via Semi-infinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1820-1846, November.
    7. J.F. Sturm & S. Zhang, 1998. "On Sensitivity of Central Solutions in Semidefinite Programming," Tinbergen Institute Discussion Papers 98-040/4, Tinbergen Institute.
    8. O. I. Kostyukova & T. V. Tchemisova, 2022. "On strong duality in linear copositive programming," Journal of Global Optimization, Springer, vol. 83(3), pages 457-480, July.
    9. Brinkhuis, J. & Zhang, S., 2003. "A D-induced duality and its applications," Econometric Institute Research Papers EI 2003-42, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Zhi-Quan Luo & Shuzhong Zhang, 1997. "On the extensions of Frank-Wolfe theorem," Tinbergen Institute Discussion Papers 97-122/4, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:158:y:2013:i:1:d:10.1007_s10957-012-0219-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.